Answer:
For the first situation, we first need to find the mass of the second train car.
In order to do that, we apply the conservation of the amount of movement:

and we have as a result:
m2 = 289.6875
For the second situation, also we will apply the conservation of the amount of movement:

and we have as a result:
V = 2.64 (it is moving to the right)
Answer:
V = λ f (wavelength * frequency)
λ = V / f = 343 m/s / 262 / s = 1.3 m
Answer:
Explanation:
force = f, mass = m, acceleration = a
f = m a
m = 200 kg
f = 800 N
f = m a
800 = 200a
a = 800 / 200
<u><em>a = 4</em></u>
Hope this helps
plz mark as brainliest!!!!!!!
Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement
Answer:
4 : 1
Explanation:
<h3><u>Pulse rate</u></h3>
Also referred as heart rate can be affected due to vigorous exercise, age, health. Normally the pulse rate of an adult is between 60 to 100 beats per minute. pulse rate: 80 bpm.
<h3><u>Breathing rate</u></h3>
The amount of oxygen taken in inside of our body from the air. Breathing rate is usually affected due to age. Normal breathing rate of an adult is between 15 to 24 breaths per minute. breathing rate: 20 bpm.
<h3><u>Ratio of breathing to pulse rate</u></h3>
pulse rate : breathing rate
80 : 20
4 : 1