1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
3 years ago
5

Potential energy calculation - MxGxH. Gravity equals 10. How much

Physics
1 answer:
Elena L [17]3 years ago
8 0

Answer:

Ep = 0.6095 [J]

Explanation:

As defined in the problem statement, potential energy is defined as the product of mass by gravity by height. But first we must convert all the values given to measures of the international system (SI)

g = gravity = 10 [m/s^2]

h = elevation = 40 [ft] = 12.19 [m]

m = mass = 5 [g] = 0.005 [kg]

Ep = potential energy [J]

Ep = 0.005*10*12.19 = 0.6095 [J]

You might be interested in
Which statement correctly describes the relationship between frequency and wavelength?
Len [333]
The relationship between the frequency and wavelength of a wave is given by the equation:

v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency. 

If we divide the equation by f we get:

λ=v/f

From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases. 

So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.  
3 0
3 years ago
Read 2 more answers
Suppose a 1300 kg car is traveling around a circular curve in a road at a constant
Scrat [10]

Answer:

F = 4212 N

Explanation:

Given that,

Mass of a car, m = 1300 kg

Speed of car on the road is 9 m/s

Radius of curve, r = 25 m

We need to find the magnitude of the unbalanced force that steers the car out of its natural straight-  line path. The force is called centripetal force. It can be given by :

F=\dfrac{mv^2}{r}\\\\F=\dfrac{1300\times 9^2}{25}\\\\F=4212\ N

So, the force has a magnitude of 4212 N

4 0
2 years ago
Two long straight wires are parallel and 8.6 cm apart. They are to carry equal currents such that the magnetic field at a point
Neko [114]

Answer:

(a) The current should be in opposite direction

(b) The current needed is 39.8 A

Explanation:

Part (a)

Based, on right hand rule, the current should be in opposite direction

Part (b)

given;

strength of magnetic field, B = 370 µT

distance between the two parallel wires, d = 8.6 cm

B = \frac{\mu_oI}{2\pi R}

At the center, the magnetic field strength is twice

B_c = 2(\frac{\mu_oI}{2\pi R}) =\frac{ \mu_oI}{\pi R}

R = d/2 = 8.6/2 = 4.3 cm = 0.043 m

B_c = \frac{ \mu_oI}{\pi R}\\\\I = \frac{B_c\pi R}{\mu_o} = \frac{370 *10^{-6}* \pi *0.043}{4\pi *10^{-7}}\\\\I = 39.8 \ A

Therefore, current needed is 39.8 A

6 0
3 years ago
Question 25 of 30
VARVARA [1.3K]

Answer:

it's B. circuit a and b are series circuit while c is parallel

7 0
3 years ago
A spherical capacitor contains a charge of 3.00 nC when connected to a potential difference of 230 V. If its plates are separate
Assoli18 [71]

Answer:

Part(a): the capacitance is 0.013 nF.

Part(b): the radius of the inner sphere is 3.1 cm.

Part(c): the electric field just outside the surface of inner sphere is \bf{2.81 \times 10^{4}~n~C^{-1}}.

Explanation:

We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '\epsilon_{0}' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

C = \dfrac{4 \pi \epsilon_{0}}{(\dfrac{1}{a} - \dfrac{1}{b})}~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)

Part(a):

Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.

So the capacitance (C) of the shell is

C &=& \dfrac{Q}{V} = \dfrac{3 \times 10^{-90}~C}{230~V} = 1.3 \times 10^{-11}~F = 0.013~nF

Part(b):

Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

&& \dfrac{1}{a} = \dfrac{1}{b} + \dfrac{1}{C/4 \pi \epsilon_{0}} = \dfrac{1}{0.043} + \dfrac{1}{1.3 \times 10^{-11} \times 9 \times 10^{9}} = 31.79\\&or,& a = \dfrac{1}{31.79}~m = 0.031~m = 3.1~cm

Part(c):

If we apply Gauss' law of electrostatics, then

&& E~4 \pi a^{2} = \dfrac{Q}{\epsilon_{0}}\\&or,& E = \dfrac{Q}{4 \pi \epsilon_{0}a^{2}}\\&or,& E = \dfrac{3 \times 10^{-9} \times 9 \times 10^{9}}{0.031^{2}}~N~C^{-1}\\&or,& E = 2.81 \times 10^{4}~N~C^{-1}

3 0
3 years ago
Other questions:
  • What to press when leaving laptop for a moment?
    8·1 answer
  • What is the speed of sound at sea level?
    13·1 answer
  • Bianca sends her brother Phineas an e-mail to invite him to dinner. In this scenario, what is the channel according to Shannon's
    12·1 answer
  • Calculate the force between two objects that have
    13·1 answer
  • What is another name for matter/material
    11·1 answer
  • If the line graph had a broken line between the points
    14·1 answer
  • Which of the following involves reflected light waves
    6·1 answer
  • Type the correct answer in the box. Spell all words correctly. Complete the sentence using the correct term. A ______enforces fe
    15·1 answer
  • Write two example in which chemical energy is converted into heat energy ​
    11·1 answer
  • The frequency, or number of waves that pass a given point per second, of
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!