The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery:
Answer:
A. False, frequency can increase or decrease wavelength.
For example: a high frequency would mean there are shorter wavelengths that occur in a period. Meanwhile, a low frequency would indicate that the wavelengths are longer and in longer periods.
Answer:
An object is called a horizontal projectile if it is launched from a certain height with some initial horizontal velocity only. The initial vertical velocity of such an object is zero. But as the object falls through the atmosphere the horizontal component of velocity remains constant but vertical component increases due to gravitational acceleration.
Explanation: