Answer:
388.97 nm
Explanation:
The computation of the wavelength of this light in benzene is shown below:
As we know that
n (water) = 1.333
n (benzene) = 1.501

And, the wavelength of water is 438 nm
![\lambda (benzene) = \lambda (water) [\frac{n(water)}{n(benzene}]](https://tex.z-dn.net/?f=%5Clambda%20%28benzene%29%20%3D%20%5Clambda%20%28water%29%20%5B%5Cfrac%7Bn%28water%29%7D%7Bn%28benzene%7D%5D)
Now placing these values to the above formula
So,

= 388.97 nm
We simply applied the above formula so that we can easily determine the wavelength of this light in benzene could come
Answer:
You need to use charts or a calculator to get 56%
Explanation:
Answer:
x = - 1.4
Explanation:
-5=10x+2-5x (subtract 5x from both sides)
-5=5x+2 (simplify)
-5-2=5x (subtract 2 from both sides)
-7=5x (simplify)
x=-7/5 (divide both sides by 5)
x=-1.4 (simplify)
i would really appreciate getting a brainliest. anyways i hope this helped and have a great rest of your day/night!! :)
Answer:
6.88 mA
Explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ = 
or
I₀ = 
or
I₀ = 0.0109 A
also,
I = ![I_0[1-e^{-\frac{t}{\tau}}]](https://tex.z-dn.net/?f=I_0%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%7D%5D)
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I = ![0.0109[1-e^{-\frac{\tau}{\tau}}]](https://tex.z-dn.net/?f=0.0109%5B1-e%5E%7B-%5Cfrac%7B%5Ctau%7D%7B%5Ctau%7D%7D%5D)
or
I =
or
I = 0.00688 A
or
I = 6.88 mA
Answer:
The speed of the large cart after collision is 0.301 m/s.
Explanation:
Given that,
Mass of the cart, 
Initial speed of the cart, 
Mass of the larger cart, 
Initial speed of the larger cart, 
After the collision,
Final speed of the smaller cart,
(as its recolis)
To find,
The speed of the large cart after collision.
Solution,
Let
is the speed of the large cart after collision. It can be calculated using conservation of momentum as :





So, the speed of the large cart after collision is 0.301 m/s.