When something is hit harder just like when sound is turned up the waves become higher and more frequent like a zig zag more so then wavy.
Answer
given,
diameter,d₁ = 7.5 cm
d₂ = 4.5 cm
P₁ = 32 kPa
P₂ = 25 kPa
Assuming, we have calculation of flow in the pipe
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₂² v₂
Applying Bernoulli's equation
v₂ = 4.01 m/s
fluid flow rate
Q = A₂ V₂
Q = π (0.0225)² x 4.01
Q = 6.38 x 10⁻³ m³/s
flow in the pipe is equal to 6.38 x 10⁻³ m³/s
The energy in ordinary light is greater than the energy in ordinary sound
Energy is the ability to perform work in physics. It could exist in several different forms, such as potential, kinetic, thermal, electrical, chemical, radioactive, etc. Additionally, there is heat and work, which is energy being transferred from one body to another.
Energy is a physical system's ability to perform labor. The capital letter E is a typical sign for energy. The joule, denoted by the letter J, is the common unit. The energy produced by one newton's (1 N) worth of force acting over one meter's (1 m) worth of displacement is measured in joules (1 J). Because it is a fundamental human requirement, energy plays a significant role in our daily lives.
To learn more about Energy please visit-
brainly.com/question/1932868
#SPJ4
In the Celsius scale each degree is one part of 100 degrees. This is because in this scale the difference between boiling and freezing temperatures of water is 100 ° - 0 ° = 100 °, so one degree Celsius is one part of 100.
In the Farenheit scale, each degree is one part of 180 degrees. This is because in this scale the difference between the boiling and freezind temperatures are 212 ° - 32 ° = 180°, so one degree Farenheti is one part of 180.
That means that 1 °C is a larger amount than 1 °C, so 20°C is a larger amount than 20°F.
Conclusion: 20 degree change represents a larger change in Celsius scale.
Answer:
2.83
Explanation:
Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:
(1)
with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):
(2)
Because in the right side of the equation (2) we have only constant quantities, that implies the ratio
is constant for all the planets orbiting the same sun, so we can said that:



