Refer to the diagram shown below.
Let m = the mass (g) of the door.
Let v = the launch velocity
Let u = the velocity of the door after impact.
Elastic impact (rubber ball):
The rubber ball bounces off the door with presumably elastic impact, which means that both momentum and kinetic energy are conserved.
Conservation of momentum requires that
400v = -400v + mu
Therefore

Inelastic impact (clay):
The clay sticks to the door after impact.
Conservation of momentum requires that
400g = (m+400)u
Therefore

When we compare magnitudes of u for the door, we find that

Clearly, the elastic impact creates a greater value of u for the door.
Answer:
The rubber ball creates a larger impulse to the door because the nature of its impact is approximately elastic.
The average speed in m/s of a person that jogs eight complete laps around a 400m track in a total time of 15.1 min is 0.44m/s.
<h3>How to calculate average speed?</h3>
Average speed of a moving body can be calculated by dividing the distance moved by the time taken.
Average speed = Distance ÷ time
According to this question, a person jogs eight complete laps around a 400m track in a total time of 15.1 min. The average speed is calculated as follows:
15.1 minutes in seconds is as follows = 906 seconds
Average speed = 400m ÷ 906s
Average speed = 0.44m/s
Therefore, the average speed in m/s of a person that jogs eight complete laps around a 400m track in a total time of 15.1 min is 0.44m/s.
Learn more about average speed at: brainly.com/question/12322912
#SPJ1
Answer:
Explanation:
When we accelerate in a car on a straight path we tend to lean backward because our lower body part which is directly in contact with the seat of the car gets accelerated along with it but the upper the upper body experiences this force later on due to its own inertia. This force is accordance with Newton's second law of motion and is proportional to the rate of change of momentum of the upper body part.
Conversely we lean forward while the speed decreases and the same phenomenon happens in the opposite direction.
While changing direction in car the upper body remains in its position due to inertia but the lower body being firmly in contact with the car gets along in the direction of the car, seems that it makes the upper body lean in the opposite direction of the turn.
On abrupt change in the state of motion the force experienced is also intense in accordance with the Newton's second law of motion.
Answer:
Waxing Gibbous phase occurs when the Moon is mostly lit and the illuminated portion is egg-shaped (gibbous) with the eastern edge shaded. The amount of illuminated area visible is increasing from one day to the next which is what is meant by "waxing"
hope this helps
have a good day :)
Explanation:
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.