Answer:
The Earth is toward the sun
Explanation:
DONT LISTEN TO ME I AM A CHILD AND I JUST GUESSED
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the ice cube is 
The temperature of the ice cube is
The mass of the copper cube is 
The final temperature of both substance is 
Generally form the law of thermal energy conservation,
The heat lost by the copper cube = heat gained by the ice cube
Generally the heat lost by the copper cube is mathematically represented as
![Q = m_c * c_c * [T_c - T_f ]](https://tex.z-dn.net/?f=Q%20%3D%20%20m_c%20%20%2A%20%20c_c%20%2A%20%20%5BT_c%20%20-%20%20T_f%20%5D)
The specific heat of copper is 
Generally the heat gained by the ice cube is mathematically represented as

Here L is the latent heat of fusion of the ice with value 
So

=>
So
=> 
Answer:
D. Newton's first law
Explanation:
Newton's first law of inertia says that an object will remain how it is, unless affected by an outside force. In this case, the plates want to remain stationary(not moving). Therefore, if you pull the table cloth fast enough, the force of friction produced will be small enough so that the Inertia of the plates will overcome the force of friction.
Answer:
it is True as the operational definition of electric current.
Explanation:
The definition of electric current is
I = dQ / dt
By convention the direction of the current is the direction in which a positive charge flows.
The initial expression is the derivative that is the change of the load in the unit of time and this occurs in a given cross-sectional cable.
The proposed definition is the same as this, so it is True as the operational definition of electric current.