Answer:
D.vibrations that cause changes in air pressure
Explanation:
Sound is a type of wave.
A wave is a periodic disturbance/oscillation that trasmits energy without transmitting matter. There are two different types of waves:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. These waves are characterized by the presence of crests (points of maximum positive displacement) and troughs (points of maximum negative displacement). Examples of transverse wave are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. These waves are characterized by the presence of compressions (regions where the density of particle is higher) and rarefactions (regions where the density of particle is lower). Examples of longitudinal waves are sound waves.
Sound waves, in particular, consist of vibrations of the particles in a medium - most commonly, air - that occur back and forth along the direction of motion of the wave. Because of these motion, the air will have areas of higher pressure (which correspond to the compressions), where the density of particles is higher, and areas of lower pressure (which correspond to the rarefactions), where density of particles is lower.
Answer:
Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s
Explanation:
Let's start out with finding the force acting downwards because of the mass of 'The Rock':
Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N
Now the problem also states that the kinetic friction of the desk in this problem is 370 N
Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N
Now lets use F = ma to calculate for the acceleration of the desk:
787.58 = 63 x acceleration
acceleration = 12.501 m/s
Finally, we can use the motion equation:

here u = 0 m/s (since initial speed of the desk is 0)
a = 12.501 m/s
and s = 10 m
Solving this we get:


Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at 15.812 m/s when the desk reaches the window.
Answer:
Examples of man-made objects that spread an impulse over a large amount of time are "airbags" in vehicles and "arrestor beds" (for trucks).
Explanation:
The question above is highly related to the topic about "Impulse" in Physics.
"Impulse"<em> refers to an object's change in momentum (the amount of motion in an object) when a force acts upon it for an interval time.</em> When it comes to providing safety to people when it comes to vehicular crashes, impulse plays a vital role.
Let's take the example of airbags in vehicles. Once a vehicle collides with another object, the driver is carried by a forward motion. Without airbags, the time is normally shorter for the driver to be stopped by the windshield. This results to a greater force. However, with the presence of air-bags, the driver will hit the airbag, instead of the windshield. <u>This will lengthen the time of the impact, thus reducing the force.</u>
Another example are the arrestor beds for trucks. Arrestor beds have been designed in order for trucks to stop, since it's hard to maneuver them. <u>With the help of arrestor beds, trucks are able to come to a stop with a longer time interval, but decreased force.</u>
Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
Answer:
The weight if the block is 10Newtons
Explanation:
The weight of any object is quantity of matter the object contains and it is always acting downwards on such body. This shows that the object is under the influence of gravity.
The weight of an object is calculated as mass of the object × its acceleration due to gravity
W = mg
Give the mass of the brick to be 1kg
g is the acceleration due to gravity = 10m/s²
Weight of the object = 1 × 10
= 10kgm/s² or 10Newtons