1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
3 years ago
5

A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the

floor are μs and μk, respectively. A woman pushes downward on the crate at an angle θ below the horizontal with a force F⃗.
a) What is the magnitude of the force vector F⃗ required to keep the crate moving at constant velocity?

Express your answer in terms of m, g, θ, and μk.

b) If μs is greater than some critical value, the woman cannot start the crate moving no matter how hard she pushes. Calculate this critical value of μs.

Express your answer in terms of θ.

Physics
2 answers:
weeeeeb [17]3 years ago
6 0

Answer:

a) F = μk*m*g/(cosθ - μk*sinθ)

b) μs = cotθ

Explanation:

a)

Given that the body is not moving in the y-axis direction, then:

- F*sinθ - m*g + N = 0     (1)

where m*g is the weight of the body and N is the normal force.

Given that the body is moving at constant velocity in the x-axis direction, then:

F*cosθ - f = 0      (2)

where f is the friction, computed as:

f =  μk*N      (3)

Combining equations 1, 2 and 3:

F*cosθ = μk*(F*sinθ + m*g)

Isolating F:

F*cosθ = μk*F*sinθ + μk*m*g

F*(cosθ - μk*sinθ) = μk*m*g

F = μk*m*g/(cosθ - μk*sinθ)

b)

Analogously, for the static case we get:

F = μs*m*g/(cosθ - μs*sinθ)

where now F is the minimum force to move the crate. Notice that F must be positive, so:

cosθ ≥ μs*sinθ

In the limit case:

cosθ = μs*sinθ

μs = cotθ

rjkz [21]3 years ago
3 0

Answer:

a) F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

b) \mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

Explanation:

In order to solve this problem we must first do a drawing of the situation and a free body diagram. (Check attached picture).

After a close look at the diagram and the problem we can see that the crate will have a constant velocity. This means there will be no acceleration to the crate so the sum of the forces must be equal to zero according to Newton's third law. So we can build a sum of forces in both x and y-direction. Let's start with the analysis of the forces in the y-direction:

\Sigma F_{y}=0

We can see there are three forces acting in the y-direction, the weight of the crate, the normal force and the force in the y-direction, so our sum of forces is:

-F_{y}-W+N=0

When solving for the normal force we get:

N=F_{y}+W

we know that

W=mg

and

F_{y}=Fsin \theta

so after substituting we get that

N=F sin θ +mg

We also know that the kinetic friction is defined to be:

f_{k}=\mu_{k}N

so we can find the kinetic friction by substituting for N, so we get:

f_{k}=\mu_{k}(F sin \theta +mg)

Now we can find the sum of forces in x:

\Sigma F_{x}=0

so after analyzing the diagram we can build our sum of forces to be:

-f+F_{x}=0

we know that:

F_{x}=Fcos \theta

so we can substitute the equations we already have in the sum of forces on x so we get:

-\mu_{k}(F sin \theta +mg)+Fcos \theta=0

so now we can solve for the force, we start by distributing \mu_{k} so we get:

-\mu_{k}F sin \theta -\mu_{k}mg)+Fcos \theta=0

we add \mu_{k}mg to both sides so we get:

-\mu_{k}F sin \theta +Fcos \theta=\mu_{k}mg

Nos we factor F so we get:

F(cos \theta-\mu_{k} sin \theta)=\mu_{k}mg

and now we divide both sides of the equation into (cos \theta-\mu_{k} sin \theta) so we get:

F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

which is our answer to part a.

Now, for part b, we will have the exact same free body diagram, with the difference that the friction coefficient we will use for this part will be the static friction coefficient, so by following the same procedure we followed on the previous problem we get the equations:

f_{s}=\mu_{s}(F sin \theta +mg)

and

F cos θ = f

when substituting one into the other we get:

F cos \theta=\mu_{s}(F sin \theta +mg)

which can be solved for the static friction coefficient so we get:

\mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

which is the answer to part b.

You might be interested in
A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. Complete the following statemen
Eva8 [605]

Answer:

Keeping the speed fixed and decreasing the radius by a factor of 4

Explanation:

A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. The centripetal acceleration is given by :

a=\dfrac{v^2}{R}

We need to find how the "centripetal acceleration of the ball can be increased by a factor of 4"

It can be done by keeping the speed fixed and decreasing the radius by a factor of 4 such that,

R' = R/4

New centripetal acceleration will be,

a'=\dfrac{v^2}{R'}

a'=\dfrac{v^2}{R/4}

a'=4\times \dfrac{v^2}{R}

a'=4\times a

So, the centripetal acceleration of the ball can be increased by a factor of 4.

7 0
3 years ago
The wavelength of a light wave will affect the light’s
Tom [10]
Frequency and color.
6 0
3 years ago
A space shuttle takes off from FL and circles Earth several times, finally landing in CA. While the shuttle is in flight, a phot
mixer [17]

Answer:

Both the astronauts and photographer have the same displacement

Explanation:

Displacement is the minimum distance between two point. The initial point of both the astronauts and the photographer was Florida and the final point was California. So, the minimum distance for both of the astronauts and the photographer would be the distance between Florida and California would be the same.

Hence, both the astronauts and photographer will have the same displacement.

3 0
3 years ago
In a transformer, energy is carried from the primary coil to the secondary coil by:________
likoan [24]

In a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.

To find the answer, we have to know more about the transformer.

<h3>How transformer works?</h3>
  • An item utilized in the transfer of electric energy is a transformer.
  • AC current is used for transmission.
  • It is frequently used to modify the supply voltage between circuits without altering the AC frequency.
  • The fundamentals of mutual and electromagnetic induction govern how the transformer operates.
  • Magnetic field through the primary coil changes when primary coil current varies. the iron core of the secondary coil likewise has a magnetic field.
  • EMF is therefore generated in the secondary coil.

Thus, we can conclude that, in a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.

Learn more about the transformer here:

brainly.com/question/26787198

#SPJ4

5 0
2 years ago
Froghopper insects have a typical mass of around 11.3 mg and can jump to a height of 58.8 cm. The takeoff velocity is achieved a
allochka39001 [22]

Answer:

2874.33 m/s²

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{v^2-0^2}{2\times h}\\\Rightarrow v^2=2ah\ m/s

Now H-h = 0.588 - 0.002 = 0.586 m

The final velocity will be the initial velocity

v^2-u^2=2as\\\Rightarrow 0^2-u^2=2gs\\\Rightarrow -2ah=2\times g(H-h)\\\Rightarrow -2a0.002=2\times g0.586\\\Rightarrow a=-\frac{0.586\times -9.81}{0.002}\\\Rightarrow a=2874.33\ m/s^2

Acceleration of the frog is 2874.33 m/s²

6 0
3 years ago
Other questions:
  • Amy throws a softball through the air. What are the different forces acting on the ball while it’s in the air? The softball expe
    14·2 answers
  • Heat gained or lost is mass times specific heat times change in temperature.
    14·2 answers
  • An apple is pushed across a table with a velocity of 3.74 m/s rolls too far and falls 0.89
    6·1 answer
  • If a beaker of water is placed under a broiler so that the heating coil is above the beaker. It is observed that only the surfac
    7·1 answer
  • How are the wavelengths of light emitted?
    9·1 answer
  • Which has more energy, a photon of ultraviolet radiation or a photon of yellow light?
    8·1 answer
  • The star named Canopus has a declination of approximately –52°. Which of these statements is correct about Canopus?
    14·1 answer
  • A 15 n net force is used to move a 5kg box. What is the resulting acceleration?
    5·1 answer
  • If you have a final velocity of 50 m/s and travelled for 120 seconds. What
    15·2 answers
  • An electric motor rated 2.5kw is used to lift bales of hay to a store in a dairy farm. A single bale has a mass of 5kg. If the s
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!