Answer:
Remains the same
Explanation:
The speed of waves of higher and lower frequency both will be same.
the speed of sound in a medium is constant and independent of it's frequency. Moreover, when the frequency changes wavelength changes accordingly, such that their product remains constant.
we know that
υ×λ = constant = velocity
υ= frequency
λ= wavelength.
<span>10 hertz
Hertz is the frequency of oscillation which is the number of oscillations per second. So if something takes 0.10 s per oscillation, divide 1 second by the period to get the frequency. So
1 / 0.10s = 10 1/s = 10 Hertz
Therefore the object is vibrating at 10 hertz.</span>
Answer:
A sled and its rider are moving at a speed of along a horizontal stretch of snow, as Figure 4.24a illustrates. The snow exerts a kinetic frictional force on the runners of the sled, so the sled slows down and eventually comes to a stop. The coefficient of kinetic friction is 0.050. What is the displacement x of the sled?
It's average speed during that 26 seconds was about 4.77 m/s. Without seeing the graph, we can't tell if it was going faster or slower at any particular time during that period. All we can tell is its average for the full interval.
Answer:
Explanation:
The formula for time period of a pendulum is given as follows :
T = 2π
l is length of pendulum and g is acceleration due to gravity .
So time period of pendulum is not dependent on the mass of the pendulum . If time period is same and length is also the same then acceleration due to gravity will also be the same . Hence the acceleration due to gravity at distant planet will be same as that on the earth.