Given: Wavelength λ = 410 nm convert to Meters m = 4.10 x 10⁻⁷ m
Speed of light c = 3 x 10⁸ m/s
Required: Frequency f = ?
Formula: c = λf
f = c/λ
f = 3 x 10⁸ m/s/4.10 x 10⁻⁷ m
f = 7.32 x 10¹⁴/s or 732 Thz (Terahertz)
It can be a) 12Hz.................
The role of friction is of great importance when creating safety ramps and escalators because with the help of friction things move.
<h3>Why is it important to move objects slowly on ramps and escalator?</h3>
It is important to move objects slowly on ramps and escalator because the ramps and escalator moves object in the opposite direction of gravity. If we did not move objects slowly, then the objects or a person get damaged.
So we can conclude that the role of friction is of great importance when creating safety ramps and escalators because with the help of friction things move.
Learn more about friction here: brainly.com/question/24338873#SPJ1
Answer:
the distance from charge A to C is r₁₃= 1.216 m
Explanation:
following Coulomb's law , the force exerted by 2 point charges between themselves is:
F= k*q₁*q₂/r₁₂² , where q is charge , r is distance and 1 and 2 represents the charge A and charge B respectively , k=constant
since C ( denoted as 3) is at equilibrium
F₁₃=F₂₃
k*q₁*q₃/r₁₃²=k*q₂*q₃/r₂₃²
q₁/r₁₃²=q₂/r₂₃²
r₁₃²/q₁=r₂₃²/q₂
r₂₃=r₁₃*√(q₂/q₁)
since C is at rest and is co linear with A and B ( otherwise it would receive a net force in either vertical or horizontal direction) , we have
r₁₃+r₂₃=d=r₁₂
r₁₃+r₁₃*√(q₂/q₁)=d
r₁₃*(1+√(q₂/q₁))=d
r₁₃=d/(1+√(q₂/q₁))
replacing values
r₁₃=d/(1+√(q₂/q₁)) = 3.00 m/(1+√(3.10 C/1.44 C)) = 1.216 m
thus the distance from charge A to C is r₁₃= 1.216 m