Explanation:
The given data is as follows.
Velocity of bullet,
= 814.8 m/s
Observer distance from marksman, d = 24.7 m
Let us assume that time necessary for report of rifle to reach the observer is t and will be calculated as follows.
t =
(velocity in air = 343 m/s)
= 0.072 sec
Now, before the observer hears the report the distance traveled by the bullet is as follows.

= 
= 58.66
= 59 (approx)
Thus, we can conclude that each bullet will travel a distance of 59 m.
The correct answer to the question is False i.e the tendency of an object in motion to remain in motion is not called the orbital speed.
EXPLANATION:
Before going to answer this question, first we have to understand Newton's first laws of motion.
As per Newton's first laws of motion, every body continues to be in state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces.
Hence, as long as no unbalanced force is acting on a moving object, it will be in motion. This tendency of a moving object to be in motion is called inertia of motion of the body.
Inertia of motion is the property of the body by virtue of which a moving body always tries to be in motion.
Hence, the tendency of an object in motion to remain in motion is not called as the orbital speed.
A) Geothermal
B) Hydroelectric
C)Biomass
D) Wind
I assume this is the four options you had, correct?
i think that biomass is the only one that would release the greenhouse gases. I once heard, it may not be true, that biomass has more co2 released than coal.
Answer:Theoretical Discussion
The diffraction of classical waves refers to the phenomenon wherein the waves encounter an obstacle that fragments the wave into components that interfere with one another. Interference simply means that the wave fronts add together to make a new wave which can be significantly different than the original wave. For example, a pair of sine waves having the same amplitude, but being 180◦ out of phase will sum to zero, since everywhere one is positive, the other is negative by an equal amount.