The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
Answer:
P(bat) = V²r/(R+r)²
Explanation:
Let the resistance of the coil be R
Internal resistance of the battery be r
Emf of the battery = V
Power dissipated in the internal resistance of the battery is normally given as P = I²r
where I is the current flowing in the circuit.
From Ohm's law,
V = I R(eq)
R(eq) = (R + r)
I = V/(R+r)
P = I²r
P = [V/(R+r)]²r
P = V²r/(R+r)²
Hope this Helps!!!
Answer:
Explanation:
60 meters is he answer for this question