Problem 1, part (a)
<h3>Answer: False</h3>
For instance, 200 feet in real life can be reduced to scale down to say 2 inches on paper. So we have a reduction going on, and not an enlargement.
====================================================
Problem 1, part (b)
<h3>Answer: true</h3>
This is because a scale drawing involves similar polygons. This is true whenever any dilation is applied.
====================================================
Problem 2
I'm not sure how your teacher wanted you to answer this question. S/he didn't give you any numbers for the side lengths of the polygon. The angle measures are missing as well.
Answer:
B.
Step-by-step explanation:
Answer:
hope this helps you out good luck with your math
For this case what you need to know is that the original volume of the cookie box is:
V = (w) * (l) * (h)
Where,
w: width
l: long
h: height.
We have then:
V = (w) * (l) * (h) = 48 in ^ 3
The volume of a similar box is:
V = (w * (2/3)) * (l * (2/3)) * (h * (2/3))
We rewrite:
V = ((w) * (l) * (h)) * ((2/3) * (2/3) * (2/3))
V = (w) * (l) * (h) * ((2/3) ^ 3)
V = 48 * ((2/3) ^ 3)
V = 14.22222222 in ^ 3
Answer:
the volume of a similar box that is smaller by a scale factor of 2/3 is:
V = 14.22222222 in ^ 3