Answer:
22.7 g of CaCl₂ are produced in the reaction
Explanation:
This is the reaction:
CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O
Now, let's determine the limiting reactant.
Let's divide the mass between the molar mass, to find out moles of each reactant.
29 g / 100.08 g/m = 0.289 of carbonate
15 g / 36.45 g/m = 0.411 of acid
1 mol of carbonate must react with 2 moles of acid
0.289 moles of carbonate will react with the double of moles (0.578)
I only have 0.411 of HCl, so the acid is the limiting reactant.
Ratio is 2:1, so I will produce the half of moles, of salt.
0.411 / 2 = 0.205 moles of CaCl₂
Mol . molar mass = mass → 0.205 m . 110.98 g/m = 22.7 g
Radioactivity comes from unstable atoms of certain elements. Radioactivity consists of alpha radiation (2 protons and 2 neutrons), beta radiation (1 electron), or gamma radiation (Electromagnetic photons).
Answer:
I. The balloon has a volume of 22.4L
III. The balloon contains 6.022x10^23 molecules.
Explanation:
At stp, it has been proven that 1mole of a gas occupy 22.4L.
Therefore, option (i) is correct.
The molar mass N2 = 14.01 x 2 = 28.02g/mol
Number of mole of N2 = 1 mole
Mass of N2 =..?
Mass = mole x molar Mass
Mass of N2 = 1 x 28.02 = 28.02g.
The mass content of the balloon is 28.02g, therefore, option (ii) is wrong.
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02x10^23 molecules. This implies that 1 mole of N2 also contains 6.02x10^23 molecules
Therefore, option (iii) is correct.
The correct options to the question are:
Option i and option iii
Answer:
Beta emission
Explanation:
In beta emission, a neutron is converted into a proton thereby emitting an electron and a neutrino. A neutrino is a particle that serves to balance the spins.
When a nucleus undergoes beta emission, the mass number of the parent and daughter nuclei remain the same while the atomic number of the daughter nucleus is greater than that of its parent by one unit.
Hence, in beta emission, the daughter nucleus is found one pace to the right of the parent in the periodic table.
<h3>Answer:</h3>
64 g O₂
<h3>General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 36 g H₂O
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol O₂ → 2 mol H₂O
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mas of H - 1.01 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Divide/Multiply [Cancel Units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
63.929 g O₂ ≈ 64 g O₂