N2 + 3 H2 >> 2 NH3
moles NH3 = 11.50 g /17.0307 g/mol=0.6753
the ratio between H2 and NH3 is 3 : 2
moles H2 needed = 0.6753 x 3/2 =1.013
mass H2 = 1.013 mol x 2.106 g/mol=2.042 g
Answer: b} The exact time when an individual atom will decay can be accurately predicted.
c} After each half-life, the amount of radioactive material is reduced by half.
Explanation:
All radioactive decay follows first order kinetics.
Rate law expression for first order kinetics is given by:
where,
k = rate constant
t = time taken for decay process
a = initial amount of the reactant
a - x = amount left after decay process
Expression for calculating half life, which is the time taken by the half of the reactants to decompose is:

Answer:
A bonding that occurs between high electronegative atoms such are N, F, O and H atoms, is called a hydrogen bond. Hydrogen bond is a very strong bond. (C)
If hydrogen bonds are not formed between H atoms and N, F, O atom, then the atoms interact through dispersion forces (also known as london dispersion forces). Dispersion forces are weak and they are temporary forces formed by overlapping of orbitals. (B)
Answer:
A. Compounds
Explanation:
Firstly, don't let the word "pure" confuse you; this is pretty much irrelevant to the question.
The key to answering this question lies in "substance" and "more than one type of element chemically bonded."
Something you ought to memorize is that a substance is either an element or compound. Therefore, you can eliminate choices B./C.
Next, use the part of the definition that says "more than one type of element chemically bonded" to conclude that it's a compound. Not only is this the definition of a compound, but the fact that is says <em>more than one type of element</em> should automatically tell you that it is different from just a regular element (Choice D.).