<u>Given:</u>
Moles of He = 15
Moles of N2 = 5
Pressure (P) = 1.01 atm
Temperature (T) = 300 K
<u>To determine:</u>
The volume (V) of the balloon
<u>Explanation:</u>
From the ideal gas law:
PV = nRT
where P = pressure of the gas
V = volume
n = number of moles of the gas
T = temperature
R = gas constant = 0.0821 L-atm/mol-K
In this case we have:-
n(total) = 15 + 5 = 20 moles
P = 1.01 atm and T = 300K
V = nRT/P = 20 moles * 0.0821 L-atm/mol-K * 300 K/1.01 atm = 487.7 L
Ans: Volume of the balloon is around 488 L
Answer:
I think this is it
Water can have two different densities if it has substances dissolved in it. ... When liquid water freezes it becomes solid water or ice, which is less dense than liquid water. The fact that solid water (ice) is less dense than liquid water is evident in the way ice floats in a glass of water.
Explanation:
Answer:
Explanation:
Secondary consumers are organisms that eat primary consumers for energy. Primary consumers are always herbivores, or organisms that only eat autotrophic plants.
Carnivores only eat other animals, and omnivores eat both plant and animal matter.
Answer:
I think the answer is C but you might need a second opinion on this answer
Answer:
B
Explanation:
This is because the periodic table is designed this way.