Which statement is always false for athletes participating in team sports?
Answer: Out of all the options shown above the one that best represents the statement that is alway false for athletes participating in team sports is answer choice C) Conflict resolution is a sign of poor sportsmanship. All the other choices are true when it comes to team sports.
I hope it helps, Regards.
semiconductors ... silicon, germanium etc ...
Assuming a perpetual inventory system and using the weighted average method, the weighted average unit is determined as $11.44 after the October 22 purchase.
<h3>What is Weighted Average Cost (WAC)?</h3>
The Weighted Average Cost (WAC) method of inventory valuation in accounting uses a weighted average to establish the COGS and inventory levels.
The price of the products up for grabs is divided by the quantity of them in the weighted average cost technique.
The WAC technique is appropriate under both GAAP and IFRS accounting. Weighted Average Cost (WAC) Method Formula
<h3>Weighted Average Cost</h3>
Weighted Average Unit Costs = [360 units×$12 + (320-180) ×$10] / [360+(320-180)]units}
Weighted Average Unit Costs = $5720 / 500 units
Weighted Average Unit Costs = $11.44
Costs of goods that are offered for sale are calculated using beginning inventory value plus acquisitions.
Units available for sale are the number of units that can be sold by a company or the total number of units that are in its inventory.
To know more about weighted average cost, Visit
brainly.com/question/13543092
#SPJ4
what? I guess:
- practice different habits. If you fail don't give up.
- don't always trust people, some are not what they seem.
this question doesn't make any sense...
Answer:
Explanation:
We know that the electric force equation is:

- k is the electric constant

- r is the distance between the particles
- q1 and q2 are the particle
Now, we have three particles, the first one at x=0, the second one at x=2a and the third in some place between these two particle.
1. Let's find the electric force between the first particle and the third particle.



r(31) is the distance between 3 and 1
2. Now, let's find the electric force between the third particle and the second particle.



r(32) is the distance between 3 and 2.
Now,
or 
The net force must be zero so:
![F_{31}+F_{32}=0[\tex][tex]k\frac{2q^{2}}{r_{31}^{2}}-k\frac{q^{2}}{r_{32}^{2}}=0[\tex] [tex]kq^{2}(\frac{2}{r_{31}^{2}}-\frac{1}{r_{32}^{2}})=0[\tex] [tex]kq^{2}(\frac{2}{r_{31}^{2}}-\frac{1}{(2a-r_{31})^{2}})=0[\tex] It means that:[tex]\frac{2}{r_{31}^{2}}-\frac{1}{(2a-r_{31})^{2}}](https://tex.z-dn.net/?f=F_%7B31%7D%2BF_%7B32%7D%3D0%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5Dk%5Cfrac%7B2q%5E%7B2%7D%7D%7Br_%7B31%7D%5E%7B2%7D%7D-k%5Cfrac%7Bq%5E%7B2%7D%7D%7Br_%7B32%7D%5E%7B2%7D%7D%3D0%5B%5Ctex%5D%20%20%20%3C%2Fp%3E%3Cp%3E%5Btex%5Dkq%5E%7B2%7D%28%5Cfrac%7B2%7D%7Br_%7B31%7D%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7Br_%7B32%7D%5E%7B2%7D%7D%29%3D0%5B%5Ctex%5D%20%3C%2Fp%3E%3Cp%3E%5Btex%5Dkq%5E%7B2%7D%28%5Cfrac%7B2%7D%7Br_%7B31%7D%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B%282a-r_%7B31%7D%29%5E%7B2%7D%7D%29%3D0%5B%5Ctex%5D%20%3C%2Fp%3E%3Cp%3EIt%20means%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cfrac%7B2%7D%7Br_%7B31%7D%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B%282a-r_%7B31%7D%29%5E%7B2%7D%7D)
We just need to solve it for r(31)


Therefore the distance from the origin will be:
I hope it helps you!