Answer:
(a) 0.613 m
(b) 0.385 m
(c) vₓ = 1.10 m/s, vᵧ = 3.50 m/s
v = 3.68 m/s², θ = 72.6° below the horizontal
Explanation:
(a) Take down to be positive.
Given in the y direction:
v₀ = 0 m/s
a = 10 m/s²
t = 0.350 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.350 s) + ½ (10 m/s²) (0.350 s)²
Δy = 0.613 m
(b) Given in the x direction:
v₀ = 1.10 m/s
a = 0 m/s²
t = 0.350 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (1.10 m/s) (0.350 s) + ½ (0 m/s²) (0.350 s)²
Δx = 0.385 m
(c) Find: vₓ and vᵧ
vₓ = aₓt + v₀ₓ
vₓ = (0 m/s²) (0.350 s) + 1.10 m/s
vₓ = 1.10 m/s
vᵧ = aᵧt + v₀ᵧ
vᵧ = (10 m/s²) (0.350 s) + 0 m/s
vᵧ = 3.50 m/s
The magnitude is:
v² = vₓ² + vᵧ²
v = 3.68 m/s²
The direction is:
θ = atan(vᵧ / vₓ)
θ = 72.6° below the horizontal
The bowling ball will require more force to roll because it is more massive.
Answer:
the spring constant k = 
the value for the damping constant 
Explanation:
From Hooke's Law

Thus; the spring constant k = 
The amplitude is decreasing 37% during one period of the motion


Therefore; the value for the damping constant 
Food has calories which feeds your bones in your body from eating away your muscles, it doesn’t have “energy” on the other hand pop and drinks do.
<u>Thermal energy</u><u> from the room-temperature water will continuously flow to the boiling water.</u>
- The second law states, in a straightforward manner, that heat cannot naturally go "uphill."
- When a pan of boiling water and a pan of ice are in touch, the hot water cools and the ice melts and warms up.
<h3>
THE FIRST LAW OF THERMODYNAMICS</h3>
- Adiabatic Process - is a procedure that is carried out without the system's heat content changing.
- Water is heated to a temperature of 1000C during the boiling process, making it an isothermal process. As steam, the excess heat leaves the system.
Learn more about first law of thermodynamics brainly.com/question/3808473
#SPJ4