the correct amswer is 4.17g
Answer:

Explanation:
We usually approximate the density of water to about
at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about
. For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at
, and the density at this point is exactly
.
If the enthalpy is positive and the entropy is positive, the Gibbs energy will always be positive, and the reaction will never be feasible.
<h3>What is the Gibbs Free Energy?</h3>
The Gibb Free Energy is used to obtain the feasibility of a reaction. If the Gibbs free energy is positive the reaction is not spontaneous. If the value is negative, the reaction is spontaneous while a zero values indicates equilibrium.
From the equation;
ΔG = ΔH - TΔS, it follows that if the enthalpy is positive and the entropy is positive, the Gibbs energy will always be positive, and the reaction will never be feasible.
Learn more about Gibbs Free energy:brainly.com/question/20358734
#SPJ1
Answer: Sorry I can't read it
:(
Explanation:
Answer:
-pneumonoultramicroscopicsilicovolcanoconiosis
-pneumonoultramicroscopicsilicovolcanoconiosis
Explanation: