The equation relating velocity and wavelength is written below:
v = λf
where λ is the wavelength in m while f is frequency in 1/s.
Let's determine first the frequency from the speed of light:
c = distance/time, where c is the speed of light equal to 3×10⁸ m/s
3×10⁸ m/s = (300 mm)(1 m/1000 mm)/ time
time = 1×10⁻⁹ seconds
Since f = 1/t,
f = 1/1×10⁻⁹ seconds = 10⁹ s⁻¹
Thus,
v = (795×10⁻⁹ m)(10⁹ s⁻¹)
v = 795 m/s
(also called Observational Error) is the difference between a measured quantity and its true value. It includes random error
Answer:
67.6 years is the time the isotope take to decay from 0.900g to 0.170g
Explanation:
The radioactive decay follows first order law:
Ln [A] = -kt + ln[A]₀
<em>Where [A] is concentration after time t,</em>
<em>k is decay constant:</em>
<em>k = ln 2 / t(1/2)</em>
<em>k = ln2 / 28.1 years</em>
<em>k = 0.02467 years⁻¹</em>
<em>[A]₀ = Initial concentration.</em>
<em />
We can replace concentration and use the mass of the isotope:
Ln [A] = -kt + ln[A]₀
Ln [0.170g] = -0.02467 years⁻¹t + ln[0.900g]
-1.667 = -0.02467 years⁻¹t
t =
<h3>67.6 years is the time the isotope take to decay from 0.900g to 0.170g</h3>
<h3>Answer:</h3>
2.55 × 10²² Na Atoms
<h3>Solution:</h3>
Data Given:
M.Mass of Na = 23 g.mol⁻¹
Mass of Na = 973 mg = 0.973 g
# of Na Atoms = ??
Step 1: Calculate Moles of Na as:
Moles = Mass ÷ M.Mass
Moles = 0.973 g ÷ 23 g.mol⁻¹
Moles = 0.0423 mol
Step 2: Calculate No, of Na Atoms as:
As 1 mole of sodium atoms counts 6.022 × 10²³ and equals exactly to the mass of 23 g. So, we can write,
Moles = No. of Na Atoms ÷ 6.022 × 10²³ Na Atoms.mol⁻¹
Solving for No. of Na Atoms,
No. of Na Atoms = Moles × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 0.0423 mol × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 2.55 × 10²² Na Atoms
<h3>Conclusion: </h3>
2.55 × 10²² sodium atoms are required to reach a total mass of 973 mg in a substance of pure sodium.
Yes that is definitely true