Answer:
light with a high enough intensity
Explanation:
Answer: Option (a) is the correct option.
Explanation:
In order to travel, sound does need a medium. The more closer the particles of a medium, the better sound can travel through it. Therefore, in solids sound travels very quickly because in solids particles are closer to each other. As a result, they can easily transmit the energy from one particle to another.
Thus, it becomes easier for sound to travel through it. On the other hand, in solids sound can travel in both longitudinal and transverse waves.
Hence, out of the given options, sound travels in transverse waves requires a medium to travel through is the correct option.
Answer:
W = -120 KJ
Explanation:
Since the piston–cylinder assembly undergoes an isothermal process, then the temperature is constant.
Thus; T1 = T2 = 400K
change in entropy; ΔS = −0.3 kJ/K
Formula for change in entropy is written as;
ΔS = Q/T
Where Q is amount of heat transferred.
Thus;
Q = ΔS × T
Q = -0.3 × 400
Q = -120 KJ
From the first law of thermodynamics, we can find the workdone from;
Q = ΔU + W
Where;
ΔU is Change in the internal energy
W = Work done
Now, since it's an ideal gas model, the change in internal energy is expressed as;
ΔU = m•C_v•ΔT
Where;
m is mass
C_v is heat capacity at constant volume
ΔT is change in temperature
Now, since it's an isothermal process where temperature is constant, then;
ΔT = T2 - T1 = 0
Thus;
ΔU = m•C_v•ΔT = 0
ΔU = 0
From earlier;
Q = ΔU + W
Thus;
-120 = 0+ W
W = -120 KJ
Answer is: because pH value of solution is changing.
Balanced chemical reaction: NaOH(aq) + HCl(aq) → NaCl(aq) + H₂O(l).
pH of sodium hydroxide solution is above seven (basic), when solution of hydrochloric acid is added, pH slowly dropping until it became neutral solution (pH is equal seven) and that is endpoint of titration.
Answer:
Explanation:
Liquid-liquid extraction is a very useful method to separate components from a mixture. It consists of separating one or several substances dissolved in a solvent by transferring them to another solvent insoluble or partially insoluble in the first. The transfer of matter is achieved by direct contact between the two liquid phases.
For the extraction process, the solution is placed in a separating funnel, a water-immiscible organic solvent is added (ethyl ether is the most used), the solution with the compound to be separated, the funnel is covered and the funnel is top. Then it shakes. Depending on the solubilities and density, different layers are observed. The denser the compound, the more it will sink.
Since the organic compound is usually much more soluble in ether than in water, most of the organic compound will be dissolved in the ether phase (upper phase) and inorganic salts, which are not soluble in ether, will remain in the aqueous phase ( lower phase). Subsequently, by separating the separating funnel the two phases are separated, the organic phase is collected.
Occasionally, after stirring, the two immiscible liquids do not separate sharply, forming an emulsion in the intermediate zone. This is called the colloidal suspension of a liquid in another (system consisting of two or more phases, usually a liquid and another dispersed in the form of generally very fine solid particles). One of the reasons for the formation of an emulsion is when the two phases have similar densities. Then the relative density of the organic solvent and water cannot always be relied upon, although there are methods to facilitate the complete separation of the two phases.