Answer:
162 g Fe₂O₃
Explanation:
To find the mass of Fe₂O₃, you need to (1) convert grams C to moles C (via molar mass from periodic table), then (2) convert moles C to moles Fe₂O₃ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles Fe₂O₃ to grams (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to reflect the given value.
Molar Mass (C): 12.011 g/mol
2 Fe₂O₃(s) + 3 C(s) ---> 4 Fe(s) + 3 CO₂(g)
Molar Mass (Fe₂O₃): 2(55.845 g/mol) + 3(15.998 g/mol)
Molar Mass (Fe₂O₃): 159.684 g/mol
18.3 g C 1 mole 2 moles Fe₂O₃ 159.684 g
-------------- x ---------------- x ------------------------- x ----------------- = 162 g Fe₂O₃
12.011 g 3 moles C 1 mole
Answer:
= 20.82 g of BaCl2
Explanation:
Given,
Volume = 200 mL
Molarity = 0.500 M
Therefore;
Moles = molarity × volume
= 0.2 L × 0.5 M
= 0.1 mole
But; molar mass of BaCl2 is 208.236 g/mole
Therefore; 0.1 mole of BaCl2 will be equivalent to;
= 208.236 g/mol x 0.1 mol
= 20.82 g
Therefore, the mass of BaCl2 in grams required is 20.82 g
Answer:
CaCl₂(s) ⟶ Ca²⁺(aq) + 2Cl⁻(aq)
Explanation:
When the calcium chloride dissolves. the calcium and chloride ions leave the surface of the solid and go into solution as hydrated ions.
Using Avogadros number, we can get that 1 mole of an atom
contain 6.022 x 10^23 atoms. Therefore we can use this conversion factor to get
the number of moles:
moles ZnCO3 = 6.11 x 10^22 atoms * (1 mole / 6.022 x 10^23
atoms) = 0.10146 moles
The molar mass of ZnCO3 is about 125.39 g/mol, therefore the
mass is:
mass ZnCO3 = 0.10146 moles * (125.39 g / mol)
<span>mass ZnCO3 = 12.72 g</span>
Answer:
1) P₄ + 5O₂ → P₄O₁₀ redox reaction
2) P₄O₁₀ + 6H₂O → 4H₃PO₄ acid-base reaction
3) Ca₅(PO₄)₃F + 5H₂SO₄ → 3H₃PO₄ + HF + 5CaSO₄ precipitation reaction
Explanation:
The reactions that take place in the <u>electric furnace method</u> are:
1) P₄ + 5O₂ → P₄O₁₀
This is a redox reaction, because the oxidation state of the reactants is changed.
2) P₄O₁₀ + 6H₂O → 4H₃PO₄
This is an acid-base reaction, because there's an exchange of H⁺ species.
The reaction that takes place in the <u>wet process</u> is:
3) Ca₅(PO₄)₃F + 5H₂SO₄ → 3H₃PO₄ + HF + 5CaSO₄
This is an precipitation reaction, because a precipitate (a solid phase in a liquid phase) is formed.