The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
<h3>
What is Mole ?</h3>
A mole is a very important unit of measurement that chemists use.
A mole of something means you have 6.023 x 10 ²³ of that thing.
- For 2.15 mol of hydrogen sulphide (H₂S) :
1 mole hydrogen sulphide (H₂S) = 34.08088 grams
Therefore,
2.15 mol of hydrogen sulphide (H₂S) = 34.08088 grams x 2.15 mol
= 73.272 gm
- For 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) ;
1 mol of lead(II) iodide, (PbI₂) = 461.00894 grams
Therefore,
3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) = 461.00894 grams x 3.95 × 10⁻³ mol
= 1.82 gm
Hence,The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
Learn more about mole here ;
brainly.com/question/21323029
#SPJ1
Answer:
660kcal
Explanation:
The question is missing the concentration of the glucose solution. Standard glucose concentration for IV solution is 5% or 5g of glucose every 100mL of solution.
We need to determine how many grams of glucose are there inside the solution. The number of glucose in 3.3L solution will be:
3.3L * (1000mL / L) * (5g/100mL)= 165 g.
If glucose will give 4kcal/ g, then the total calories 165g glucose give will be: 165g * 4kcal/ g= 660kcal.
Answer: d :The blue and orange soccer balls; they have more mass than the black soccer ball, but changed speed by the same amount.
Yes, an OH group from ethanol can form a hydrogen bond to the ether O atom in the same way as it can do so with the single-bonded O atom in the ester.
The O atom in the carbonyl group of the ester can also form H-bonds with ethanol.