Explanation:
Formula to calculate osmotic pressure is as follows.
Osmotic pressure = concentration × gas constant × temperature( in K)
Temperature =
= (25 + 273) K
= 298.15 K
Osmotic pressure = 531 mm Hg or 0.698 atm (as 1 mm Hg = 0.00131)
Putting the given values into the above formula as follows.
0.698 = 
C = 0.0285
This also means that,
= 0.0285
So, moles = 0.0285 × volume (in L)
= 0.0285 × 0.100
= 
Now, let us assume that mass of
= x grams
And, mass of
= (1.00 - x)
So, moles of
=
Now, moles of
=
=
= x = 0.346
Therefore, we can conclude that amount of
present is 0.346 g and amount of
present is (1 - 0.346) g = 0.654 g.
Depends on the situation. If the nucleophile is already in excess, then no the reaction will not occur faster
"RED" color bends the least when passing through a prism.
The condensed formula would be CH3-CH(CH4)-CH2-CH(CH4)-CH2-CH(CH4)-CH3. The molecular formula would be C10H25.
Answer:
They will create an ionic bond.
Explanation:
The atom with the one valence electron will lose its one, because it's a metal and metals will lose electrons to become stable. The nonmetal (with 7 valence electrons) will gain that electron, therefore creating a stable octet for the nonmetal, making the compound stable.