Answer: 0.8M
Explanation:
Given that,
Amount of moles of NaCl (n) = ?
Mass of NaCl in grams = 1.40 g
For molar mass of NaCl, use the molar masses:
Sodium, Na = 23g;
Chlorine, Cl = 35.5g
NaCl = (23g + 35.5g)
= 58.5g/mol
Since, amount of moles = mass in grams / molar mass
n = 1.40g / 58.5g/mol
n = 0.024 mole
Now, given that:
Amount of moles of NaCl (n) = 0.024
Volume of NaCl solution (v) = 30.0mL
[Convert 30.0mL to liters
If 1000 mL = 1L
30.0mL = 30.0/1000 = 0.03L]
Concentration of NaCl solution (c) = ?
Since concentration (c) is obtained by dividing the amount of solute dissolved by the volume of solvent, hence
c = n / v
c = 0.024 mole / 0.03 L
c = 0.8 M (0.8M means concentration is in moles per litres)
Thus, the concentration of the solution is 0.8M
They achieve stable structures by sharing their single, unpaired electron.
Answer:
yup that's how you make friends with people on brainly
Answer:
4.22
Explanation:
pH stands for potential hydrogen. The letter “p” denotes potential and the letter “H” denotes hydrogen.
pH helps to find the acidity or alkalinity of an aqueous solution.
The number of hydrogen ions (protons) present in a solution is determined by the pH scale.
A pH greater than 7 makes the water more alkaline and a pH less than 7 makes the water more acidic.
![pH=-\log [H^+]=-\log [0.00006]=4.22](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D%3D-%5Clog%20%5B0.00006%5D%3D4.22)
since both the jars are kept at the same temperature the vapor pressure will be same in both the cases.