Answer:
(C.) AC¯¯¯¯¯≅EG¯¯¯¯¯ is true
Step-by-step explanation:
The positions of the letters in naming the triangles in the statement of congruent tells you which sides are congruent.
△ABC≅△EFG
Sides AB and EF are congruent
△ABC≅△EFG
Sides BC and FG are congruent
△ABC≅△EFG
Sides AC and EG are congruent
Look at the choices:
(C.) AC¯¯¯¯¯≅EG¯¯¯¯¯ is true
let's multiply both sides in each equation by the LCD of all fractions in it, thus doing away with the denominator.
![\begin{cases} \cfrac{1}{2}x+\cfrac{1}{3}y&=7\\\\ \cfrac{1}{4}x+\cfrac{2}{3}y&=6 \end{cases}\implies \begin{cases} \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{6}}{6\left( \cfrac{1}{2}x+\cfrac{1}{3}y \right)=6(7)}\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{12}}{12\left( \cfrac{1}{4}x+\cfrac{2}{3}y\right)=12(6)} \end{cases}\implies \begin{cases} 3x+2y=42\\ 3x+8y=72 \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20%5Ccfrac%7B1%7D%7B2%7Dx%2B%5Ccfrac%7B1%7D%7B3%7Dy%26%3D7%5C%5C%5C%5C%20%5Ccfrac%7B1%7D%7B4%7Dx%2B%5Ccfrac%7B2%7D%7B3%7Dy%26%3D6%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B6%7D%7D%7B6%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7Dx%2B%5Ccfrac%7B1%7D%7B3%7Dy%20%5Cright%29%3D6%287%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B12%7D%7D%7B12%5Cleft%28%20%5Ccfrac%7B1%7D%7B4%7Dx%2B%5Ccfrac%7B2%7D%7B3%7Dy%5Cright%29%3D12%286%29%7D%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%203x%2B2y%3D42%5C%5C%203x%2B8y%3D72%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{using elimination}}{ \begin{array}{llll} 3x+2y=42&\times -1\implies &\begin{matrix} -3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~-2y=&-42\\ 3x+8y-72 &&~~\begin{matrix} 3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~+8y=&72\\ \cline{3-4}\\ &&~\hfill 6y=&30 \end{array}} \\\\\\ y=\cfrac{30}{6}\implies \blacktriangleright y=5 \blacktriangleleft \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Busing%20elimination%7D%7D%7B%20%5Cbegin%7Barray%7D%7Bllll%7D%203x%2B2y%3D42%26%5Ctimes%20-1%5Cimplies%20%26%5Cbegin%7Bmatrix%7D%20-3x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~-2y%3D%26-42%5C%5C%203x%2B8y-72%20%26%26~~%5Cbegin%7Bmatrix%7D%203x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%2B8y%3D%2672%5C%5C%20%5Ccline%7B3-4%7D%5C%5C%20%26%26~%5Chfill%206y%3D%2630%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B30%7D%7B6%7D%5Cimplies%20%5Cblacktriangleright%20y%3D5%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{substituting \underline{y} on the 1st equation}~\hfill }{3x+2(5)=42\implies 3x+10=42}\implies 3x=32 \\\\\\ x=\cfrac{32}{3}\implies \blacktriangleright x=10\frac{2}{3} \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \left(10\frac{2}{3}~~,~~5 \right)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20%5Cunderline%7By%7D%20on%20the%201st%20equation%7D~%5Chfill%20%7D%7B3x%2B2%285%29%3D42%5Cimplies%203x%2B10%3D42%7D%5Cimplies%203x%3D32%20%5C%5C%5C%5C%5C%5C%20x%3D%5Ccfrac%7B32%7D%7B3%7D%5Cimplies%20%5Cblacktriangleright%20x%3D10%5Cfrac%7B2%7D%7B3%7D%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cleft%2810%5Cfrac%7B2%7D%7B3%7D~~%2C~~5%20%5Cright%29~%5Chfill)
The maximum distance is the <u>diameter of the circle</u>, which is of 44 units.
The equation of a circle of <u>radius r and center</u>
is given by:

- The diameter is <u>twice the radius</u>, and is the <u>maximum distance</u> between two points inside a circle.
In this problem, the circular path is modeled by:

We complete the squares to place it in the standard format, thus:



Thus, the radius is:

Then, the diameter is:

The maximum distance is the <u>diameter of the circle</u>, which is of 44 units.
A similar problem is given at brainly.com/question/24992361
Answer:
Given f(x) and g(x), please find (fog)(X) and (gof)(x) f(x) = 2x g(x) = x+3
Given f(x) and g(x), please find (fog)(X) and (gof)(x)
f(x) = 2x g(x) = x+3
print Print document PDF list Cite
Quick Answer
(fog)(x) = 2x + 6
(gof)(x) = 2x + 3
Expert Answers
HALA718 eNotes educator| CERTIFIED EDUCATOR
f(x) = 2x
g(x) = x + 3
First let us find (fog)(x)
(fog)(x) = f(g(x)
= f(x+3)
= 2(x+3)
= 2x + 6
==> (fog)(x) = 2x + 6
Now let us find (gof)(x):
(gof)(x) = g(f(x)
= g(2x)
= 2x + 3
==> (gof)(x) = 2x + 3
Step-by-step explanation: