We know,
Speed = Frequency * Wavelength
Speed = 3 * 0.1 m/s [hertz = 1/sec.]
So, your final answer is 0.3 m/s
Hope this helps!!
Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s
Answer:
Amount of Energy transferred 
Explanation:
Given:
Initial volume=V
Initial pressure=P
Final volume=2V
Final pressure=3P
Now w know that the Energy transferred in constant pressure pressure is given by

Now the Energy transferred in constant volume process is given by

The total Energy transferred is given by

Yes
Explanation:
From the graph, we can deduce that the wavelength changes with the speed of the wave.
This is a simple linear graph. A linear graph has a steady gradient and it shows two variables that increases proportionately.
Using the graph, we can establish that as the wavelength of the wave increases the time taken for one wave to pass through increases.
The speed of a wave is given as:
V = fλ
f is the frequency of the wave i.e the number of waves that passes through a point per unit of time
λ is the wavelength of the wave
The vertical axis on the graph shows the time for 1 wave trip, this is the wave period, T
f = 
Therefore;
speed of the wave = 
This can be evaluated by solving slope of the graph and finding the inverse.
We can see that as the speed of the wave changes, the wavelength will change.
learn more:
Wavelength brainly.com/question/6352445
#learnwithBrainly