Answer:
Cosmic ray's frame of reference: 99,875 years
Stationary frame of reference: 501,891 years
Explanation:
First of all, we convert the distance from parsec into metres:
![d=30,000 pc =9.26\cdot 10^{20} m](https://tex.z-dn.net/?f=d%3D30%2C000%20pc%20%3D9.26%5Ccdot%2010%5E%7B20%7D%20m)
The speed of the cosmic ray is
![v=0.98 c](https://tex.z-dn.net/?f=v%3D0.98%20c)
where
is the speed of light. Substituting,
![v=(0.98)(3.0\cdot 10^8)=2.94\cdot 10^8 m/s](https://tex.z-dn.net/?f=v%3D%280.98%29%283.0%5Ccdot%2010%5E8%29%3D2.94%5Ccdot%2010%5E8%20m%2Fs)
And so, the time taken to complete the journey in the cosmic's ray frame of reference (called proper time) is:
![T_0 = \frac{d}{v}=\frac{9.26\cdot 10^{20}}{2.94\cdot 10^8}=3.15\cdot 10^{12} s](https://tex.z-dn.net/?f=T_0%20%3D%20%5Cfrac%7Bd%7D%7Bv%7D%3D%5Cfrac%7B9.26%5Ccdot%2010%5E%7B20%7D%7D%7B2.94%5Ccdot%2010%5E8%7D%3D3.15%5Ccdot%2010%5E%7B12%7D%20s)
Converting into years,
![T_0 = \frac{3.15\cdot 10^{12}}{(365\cdot 24\cdot 60 \cdot 60}=99,875 years](https://tex.z-dn.net/?f=T_0%20%3D%20%5Cfrac%7B3.15%5Ccdot%2010%5E%7B12%7D%7D%7B%28365%5Ccdot%2024%5Ccdot%2060%20%5Ccdot%2060%7D%3D99%2C875%20years)
Instead, the time elapsed in the stationary frame of reference is given by Lorentz transformation:
![T=\frac{T_0}{\sqrt{1-(\frac{v}{c^2})^2}}](https://tex.z-dn.net/?f=T%3D%5Cfrac%7BT_0%7D%7B%5Csqrt%7B1-%28%5Cfrac%7Bv%7D%7Bc%5E2%7D%29%5E2%7D%7D)
And substituting v = 0.98c, we find:
![T=\frac{99,875}{\sqrt{1-(\frac{0.98c}{c})^2}}=501,891 years](https://tex.z-dn.net/?f=T%3D%5Cfrac%7B99%2C875%7D%7B%5Csqrt%7B1-%28%5Cfrac%7B0.98c%7D%7Bc%7D%29%5E2%7D%7D%3D501%2C891%20years)