Intermolecular forces are forces that keep molecules together. For example, the forces between two water molecules. The stronger the intermolecular forces are, the more "solid" is the matter going to be, meaning that the intermolecular forces are the strongest in solids and weakest in gases.
Make sure not to confuse intERmolecular forces (forces between *molecules*) and intRAmolecular forces (forces between *atoms* that make up a molecule).
Answer:
The direction of the force at A and B is perpendicular to the walls of the container.
The direction of the force at C is down.
The direction of the force in D is up
The direction of the force at E is to the left.
The attached figure shows the forces exerted by the water at points A, B, C, D and E.
Explanation:
The water is in contact with the bowl and with the fish. It exercises at points A, B, C, D and E, but the direction is different from the force.
The fish has a buoyant force on the water and that direction is up. The direction of at point D is up.
The column of water on the fish has a downward force, therefore the direction of the force at point C is down. The water column to the right of the fish has a force to the left, and the direction at point E is to the left.
The water will exert a force on the walls of the container and this force at points A and B is a on the walls of the container.
16.5375 .................
Here's the equation you use: Density = mass/volume
1) 5.2g/cm^3 = m/3.7cm^3
2) m = 5.2g/cm^3 x 3.7cm^3
3) m = 19.24g
You can check the answer by plugging it in
19.24g/3.7cm^3
= 5.2g/cm^3
1 newton-meter is 1 Joule, the unit of work and energy.