Answer:
3.75 m/s south
Explanation:
Momentum before collision = momentum after collision
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Since the car and truck stick together, v₁ = v₂.
m₁ u₁ + m₂ u₂ = (m₁ + m₂) v
Given m₁ = 1500 kg, u₁ = -15 m/s, m₂ = 4500 kg, and u₂ = 0 m/s:
(1500 kg) (-15 m/s) + (4500 kg) (0 m/s) = (1500 kg + 4500 kg) v
-22500 kg m/s = 6000 kg v
v = -3.75 m/s
The final velocity is 3.75 m/s to the south.
The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1
Answer:
Time will be 19 ms so option (a) is correct option
Explanation:
We have given that mass of wire m = 50 gram = 0.5 kg
Frequency f = 810 Hz
Wavelength = 0.4 m
Velocity is given by

Amplitude is given as d = 6 m
So time 
So option (a) is correct option
Slightly raising your body temperature while increase oxygen and blood circulation throughout your body