From the case we know that:
- The moment of inertia Icm of the uniform flat disk witout the point mass is Icm = MR².
- The moment of inerta with respect to point P on the disk without the point mass is Ip = 3MR².
- The total moment of inertia (of the disk with the point mass with respect to point P) is I total = 5MR².
Please refer to the image below.
We know from the case, that:
m = 2M
r = R
m2 = 1/2M
distance between the center of mass to point P = p = R
Distance of the point mass to point P = d = 2R
We know that the moment of inertia for an uniform flat disk is 1/2mr². Then the moment of inertia for the uniform flat disk is:
Icm = 1/2mr²
Icm = 1/2(2M)(R²)
Icm = MR² ... (i)
Next, we will find the moment of inertia of the disk with respect to point P. We know that point P is positioned at the arc of the disk. Hence:
Ip = Icm + mp²
Ip = MR² + (2M)R²
Ip = 3MR² ... (ii)
Then, the total moment of inertia of the disk with the point mass is:
I total = Ip + I mass
I total = 3MR² + (1/2M)(2R)²
I total = 3MR² + 2MR²
I total = 5MR² ... (iii)
Learn more about Uniform Flat Disk here: brainly.com/question/14595971
#SPJ4
Answer:
C. Both force and displacement
Explanation:
Hope this helps
Answer:
Im gonna say it is answer A:) Hope this helps!
Explanation:
The natural factor that is most likely to support the formation of an oceanic island is the rise of magma from the seafloor. Oceanic islands are also otherwise known as volcanic islands. When volcanoes erupt, they create layers of lava that break the surface of the water. When the tops of the volcanoes emerge, an island is created.<span> </span>
Answer:
0.1040512455 N

0.05925 N

Explanation:
I = Current
B = Magnetic field
Separation between end points is

Effective force is given by

The force is 0.1040512455 N

The angle the force makes is given by

The direction is 

The force is 0.05925 N


The direction is 