Answer:
As the mass of an object increases, its gravitational force increases.
As an object's distance to other objects increases, its gravitational force on those objects increases.
Explanation:
The gravitational force of one object on another is calculated with the equation
F = (G*m1*m2)/(r²),
where G is the gravitational constant,
M1 and M2 are the masses of the two objects, and
r is the distance between them
We can see that the force has a direct relationship with both of the mass values, and an inverse square relationship with the distance between them.
Hope this helped!
Answer:
Thermodynamics is usually defined as a branch of physics that deals with the study of the heat and various form of energy, and their interaction between the.
The first law says that heat appears as energy, and it cannot be produced and also cannot be demolished. It can only change from one form to another. This signifies that the total amount of energy present in the universe remains constant.
This first law can be mathematically represented as:
ΔU = Q - W
where ΔU = Changes occurring in the internal energy
Q = amount of heat added to the system
W = Amount of work done by the system
Answer:
Thermal and internal energy is equal to the sum total kinetic energy possessed by the the molecules whereas the heat energy is the transfer of thermal energy from high temperature to low temperature.
HOPE THIS HELPED!!!!
Answer:
10 gram gold is added
Explanation:
given data
pure gold = (24/24)
added = 15 grams
gold = 14 K ( 14/24)
gold = 18 K ( 18/24)
to find out
How much pure gold added
solution
we know here that when we add gold to get 20 K gold or 22K
so we added here 15 gram 14 K
we consider here m is pure gold added
so by composition here
we get
15 (14K) + m ( 24 K) = ( 15 + m ) (18) ...................1
solve it and find m
m = 10
so 10 gram gold is added
hmax = 5740.48 m. The maximum height that a cannonball fired at 420 m/s at a 53.0° angles is 5740.48m.
This is an example of parabolic launch. A cannonball is fired on flat ground at 420 m/s at a 53.0° angle and we have to calculate the maximum height that it reach.
V₀ = 420m/s and θ₀ = 53.0°
So, when the cannonball is fired it has horizontal and vertical components:
V₀ₓ = V₀ cos θ₀ = (420m/s)(cos 53°) = 252.76 m/s
V₀y = V₀ cos θ₀ = (420m/s)(cos 53°) = 335.43m/s
When the cannoball reach the maximum height the vertical velocity component is zero, that happens in a tₐ time:
Vy = V₀y - g tₐ = 0
tₐ = V₀y/g
tₐ = (335.43m/s)/(9.8m/s²) = 34.23s
Then, the maximum height is reached in the instant tₐ = 34.23s:
h = V₀y tₐ - 1/2g tₐ²
hmax = (335.43m/s)(34.23s)-1/2(9.8m/s²)(34.23s)²
hmax = 11481.77m - 5741.29m
hmax = 5740.48m