Answer:
Explanation:
Option a is correct
If puck and pick constitute a system then the momentum of the system is conserved but not this may not be valid for the puck .
Option e is correct
If puck and pick is the system then momentum is conserved but because of the presence of friction, mechanical energy is not conserved.
Friction will cause the energy to dissipate in heat.
-- Equations #2 and #6 are both the same equation,
and are both correct.
-- If you divide each side by 'wavelength', you get Equation #4,
which is also correct.
-- If you divide each side by 'frequency', you get Equation #3,
which is also correct.
With some work, you can rearrange this one and use it to calculate
frequency.
Summary:
-- Equations #2, #3, #4, and #6 are all correct statements,
and can be used to find frequency.
-- Equations #1 and #5 are incorrect statements.
Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then

That would be only rotational motion
Answer:
Vprom = 0.00347[km/min]
Explanation:
We can calculate each of the average speeds and then perform the overall average between the two speeds.
V1 = 6/54
V1 = 0.111[km/min]
V2 = 1/16
V2 = 0.0625[km/min]
![V_{prom} = \frac{V_{1} + V_{2}}{2} \\V_{prom} = \frac{0.1111 + 0.0625}{2}\\V_{prom} = 0.00347 [km/min]](https://tex.z-dn.net/?f=V_%7Bprom%7D%20%3D%20%5Cfrac%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D%7B2%7D%20%20%5C%5CV_%7Bprom%7D%20%3D%20%5Cfrac%7B0.1111%20%2B%200.0625%7D%7B2%7D%5C%5CV_%7Bprom%7D%20%3D%200.00347%20%5Bkm%2Fmin%5D)