1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
2 years ago
14

A day on a distant planet observed orbiting a nearby star is 21.5 hr. Also, a year on the planet lasts 69.3 Earth days. In other

words, for the purposes of unit conversion, there are 24 hr in a day, 60 min in an hour, and 60 s in a minute, as it would for astronomers on Earth observing the planet. Calculate the average angular speed of the planet about its own axis of rotation in radians per second, with the second as measured on Earth. what is the speed of rotation? Calculate the average angular speed of the planet as it travels around its neighboring star, with the second as measured on Earth. what is the speed of orbit?
Physics
1 answer:
serg [7]2 years ago
3 0

Answer:

Part A

The angular speed of rotation of the plane is 8.11781 × 10⁻⁵ rad/s

Part B

The angular speed of orbit of the planet is 1.04938 × 10⁻⁶ rad/s

Explanation:

The parameters of the planet are;

The duration of a day on the distant planet = 21.5 hr.

The duration of a year on the distant planet = 69.3 Earth days

Part A

The duration of a day = The time to make one complete revolution of 2·π radians

∴ The average angular speed about its axis, \omega_{rotation} = Angle turned/Time

∴ \omega_{rotation}  = 2·π/(21.5 × 60 × 60) s ≈ 8.11781 × 10⁻⁵ rad/s

The average angular speed of the planet about its own axis, \omega_{rotation}  = 8.11781 × 10⁻⁵ rad/s

The angular speed of rotation of the plane \omega_{rotation}  = 8.11781 × 10⁻⁵ rad/s

Part B

The time it takes the planet to revolve round the neighboring star once = 69.3 Earth days

Therefore, the average angular speed of the planet around its neighboring star, \omega _{Star}, is given as follows;

\omega _{Orbit}  = 2·π/((69.3 × 24 × 60 × 60) s) = 1.04938 × 10⁻⁶ rad/s

The average angular speed of orbit, \omega _{Orbit} = 1.04938 × 10⁻⁶ rad/s

The angular speed of orbit of the planet, \omega _{Orbit} = 1.04938 × 10⁻⁶ rad/s.

You might be interested in
Another name for Newton’s 2nd law
monitta
According to Newton’s second law of motion, also know as the law of force and Accelerate , a force upon an object causes it to accelerate according to the formula net force = mass x acceleration
4 0
2 years ago
How does the speed of radio waves compare with the speed of infrared waves?
Paul [167]
They both are waves but one goes faster then the other.
3 0
3 years ago
Which type of mirror causes light rays to refract away from each other?
Vikentia [17]
Mirrors don't cause refraction.

A convex mirror could cause parallel rays to REFLECT away from each other.
8 0
3 years ago
Plz help will give brainliest and 85 points and u can answer one at a time if u want
Ksju [112]
E) The number of moles of the helium of the balloon can be found by using the ideal gas law, which states:
pV=nRT
where p is the gas pressure, V is the gas volume, n is the number of moles, R is the gas constant and T the gas temperature. Since we know p,V and T of the gas, we can find the number of moles n by re-arranging the equation:
n= \frac{pV}{RT}

F) The car uses an internal combustion engine. In an internal combustion engine, the fuel (gasoline) burns releasing heat, which moves the pistons of the engine. The motion of the pistons is then converted into motion of the wheels of the car. 
The second law of thermodynamics states that the entropy of an isolated system can never decrease. If we take the engine as an isolated system, the this law applied also to it. In fact, at the beginning the engine containes fuel, which has a certain degree of "order" (entropy). When the fuel burns, the chemical bonds of the fuel are converted into heat, which has a higher degree of "disorder" (=more entropy) than the initial state. 

G1) The ice cubes in the drink undergo melting: they go from solid state into liquid state (water).
G2) Since the temperature of the ice cubes is lower than the temperature of the surrounding liquid drink, the drink releases heat to the ice cubes. This heat makes the molecules of the ice cubes to vibrate faster and faster, eventually breaking the bonds between the molecules. When this occurs, the ice cubes start melting.
G3) If the drink continues to heat, it will undergo evaporation, which is the transition between the liquid state and the gas state. This transition occurs when the energy given to the molecules of the drink is large enough to remove the intermolecular forces between the molecules of the liquid, allowing them to escape from each other.

H) Entropy is the amount of thermal energy of a system (per unit temperature) which cannot be used to do work. In practise, the entropy of a system gives a measure of the degree of "disorder" of a system. When the ice cubes melt, the entropy of the system (the ice cubes) increases, because they move from a state with higher degree of "order" (the solid state) to a state with lower degree of "order" (the liquid state).

A) This nuclear equation is an example of alpha-decay, where an unstable nucleus (uranium-235) decays into a daughter nucleus (thorum-231) releasing an alpha particle (a nucleum of helium, consisting of 2 protons and 2 neutrons). 

B) The other three types of decay are:
- beta minus decay: in an unstable nucleus, a neutron decays into a proton, releasing a fast moving electron and an antineutrino. Following this decay, the atomic number of the nucleus increases by 1 unit while its mass number remains the same
- beta plus decay: in an unstable nucleus, a proton decays into a neutron, releasing a fast moving positron and a neutrino. Following this decay, the atomic number of the nucleus decreases by 1 unit while its mass number remains the same
- gamma decay: a nucleus in excited states decays to its ground state by emitting a gamma photon, whose energy is equal to the difference in energy between the two nuclear levels.

C) The length of time of a decay process is usually expressed by using the concept of half life. The half life of a substance is the time it takes for the substance to decrease to half of its original amount. The equation that gives the amount left of a substance at time t is given by:
m(t) = m_0 e^{- \frac{t}{t_{1/2}}
where m0 is the original mass of the substance,and t_{1/2} is the half life.

7B1) In nuclear fusion, two smaller nuclei combine together (fuse) to form a new larger nucleus. An example of this process is the hydrogen-to-helium fusion, which occurs inside the stars, where two nuclei of hydrogen (one proton each) fuse together to form a nucleus of helium-4. In the nuclear fusion process, the sum of the masses of the initial nuclei is larger than the mass of the final nucleus, so the mass lost in the process has converted into energy, according to Einstein's formula: E=mc^2.
7B2) In nuclear fission, a nucleus of a heavy element absorbs a slow moving neutron, becoming unstable and decaying into smaller nuclei. An example of this process is the fission of uranium-235, which occurs inside nuclear power plants on Earth. In the process, uranium-235 decays into lighter nuclei and many neutrons, which are used to further induce other fission reactions with other nuclei of uranium-235. In the nuclear fission, the mass of the initial nucleus is greater than the masses of the final products, so the mass lost in the process has been converted into energy according to Einstein's formula: E=mc^2

8) An alternative energy source that involves the Earth is wind power: the air flows through turbines, which are put in motion by the wind. The motion of the turbines is then converted into electrical energy.
7 0
3 years ago
Read 2 more answers
Calcula el peso aparente de una bola de aluminio de 50 cm3, cuando se encuentra totalmente sumergida en alcohol. Datos: la densi
artcher [175]

Answer:

W_apparent = 93.1 kg

Explanation:

The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.

            W_apparent = W - B

The push is given by the expression of Archimeas

            B = ρ_fluide g V

            ρ_al = m / V

            m = ρ_al V

we substitute

            W_apparent = ρ_al V g - ρ_fluide g V

            W_apparent = g V (ρ_al - ρ_fluide)

       

we calculate

           W_apparent = 980 50 (2.7 - 0.8)

           W_apparent = 93100 g

            W_apparent = 93.1 kg

7 0
2 years ago
Other questions:
  • A physics student notices that the current in a coil of conducting wire goes from i1 = 0.200 A to i2 = 1.50 A in a time interval
    15·1 answer
  • What is the relationship between potential energy and mass
    11·1 answer
  • A 2-kg object is moving horizontally with a speed of 4 m/s. How much net force is required to keep the object moving at this spe
    9·1 answer
  • URGENT HELP PLEASE WILL AWARD BRAINLIEST!!!!!
    15·1 answer
  • The overall reaction in the lead storage battery is: Pb (s) + PbO2 (s) + 2 H+ (aq) + 2 HSO4 - (aq)  2 PbSO4 (s) + 2 H2O (l) Cal
    12·1 answer
  • 6. The four main systems of the Earth are
    8·2 answers
  • Can some one log into my USA test prep and do Assignments for 8A - Ms. Terrelonge.
    6·1 answer
  • A steam flows from high elevation to low elevation very quickly, has steep canyon walls, and rapidly moving water. What type of
    14·1 answer
  • 3. solve the following with regard to significant figures<br> a) 5.8 + 0.125<br> II) 3.9x105-2.5x104
    10·1 answer
  • 3. True or false. All objects that are made of metal<br> are magnetic. Explain why or why not.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!