The problem is asking how much each person will need to pay. Simplifying the problem into an equation with variables (an algorithm) will greatly help you solve it:
S = Sales Tax = $ 7.18 per any purchase
A = Admission Ticket = $ 22.50 entry price for one person (no tax applied)
F = Food = $ 35.50 purchases for two people
We know the cost for one person was: (22.50) + [(35.50/2) + 7.18] =
$ 47.43 per person. Now we can check each method and see which one is the correct algorithm:
Method A)
[2A + (F + 2S)] / 2 = [ (2)(22.50) + [35.50 + (2)(7.18)] ]/ 2 = $47.43
Method A is the correct answer
Method B)
[(2A + (1/2)F + 2S) /2 = [(2)(22.50) + 35.50(1/2) + (2)7.18] / 2 = $38.55
Wrong answer. This method is incorrect because the tax for both tickets bought are not being used in the equation.
Method C)
[(A + F) / 2 ]+ S = [(22.50 + 35.50) / 2 ] + 7.18 = $35.93
Wrong answer. Incorrect Method. The food cost is being reduced to the cost of one person but admission price is set for two people.
The correct answer would be B. Hope this helps, and please mark me the brainliest, we can be friends!!
Answer:
B. 407
Step-by-step explanation:
equation: y= A(1- r/n)^nt
y=471(1-(.07/1))^1(2)
you should get 407.37 as your answer
Answer:
In First method : counting up, counting back on a number line,
If we want the quotient after dividing the number by 5 then we count how many 5 we get from 0 to the dividend.
For example : 
Since, from 0 to 30 there are six 5's obtained. ( because 5 × 6 = 30 )
Thus, 
In Second Method : dividing by 10, and then doubling the quotient.
First we divide the number by 10 then multiply the quotient by 2.
For Example: 
Since, 

Thus, 
Now, when we compare the above methods then we conclude that for the smaller numbers first method is appropriate because for small numbers we can easily count total 5's from 0. While for large numbers Second method is appropriate because it is hard to count the total 5's for the large number.