Well, if you're using the law to work with periods of Earth satellites,
then the most convenient unit is going to be 'hours' for the largest
orbits, or 'minutes' for the LEOs.
But if you're using it to work with periods of planets, asteroids, or
comets, then you'd be working in days or years.
Answer:Expression given below
Explanation:
Given mass of spring
Compression in the spring
Let the spring constant be K
Using Energy conservation
potential energy stored in spring =Kinetic energy of Block


now conserving momentum


where
is the final velocity
That ratio is 2 .
<h3>What is ratio?</h3>
A ratio is the comparison of the two numbers bydivision.
Taking the first two outputs, or the -1/8 and -1/4, we can divide not the second one by the first one to find the
ratio:
-1/4-1/8
When dividing fractions, we multiply by the reciprocal:
-1/4x-8/1
To multiply fractions, multiply straight across:
(-1x-8)/(4x1) 8/4=2
To know more about ratio click-
brainly.com/question/25927869
#SPJ1
Answer:
the smallest angle from the antennas is <em>47.3°</em>
Explanation:
We first need to write the expression for the relation between the wavelength (λ) and the frequency (f) of the wave, and then solve for the wavelength.
Therefore, the relation is:
λ = c /f
where
- c is the speed of light constant
- λ is the wavelength
- f is the frequency
Thus,
λ = (3 × 10⁸ m/s) / (3.4 MHz)
= (3 × 10⁸ m/s) / (3.4 MHz)(10⁶ Hz/1 MHz)
= 88.235 m
Therefore, the smallest angle measured (from the north of east) from the antennas for the constructive interference of the two-radio wave can be calculated as
θ = sin⁻¹(λ / d)
where
- d is the distance between the two radio antennas
Thus,
θ = sin⁻¹(88.235 / 120)
<em>θ = 47.3 °</em>
<em></em>
Therefore, the smallest angle from the antennas, measured north of east, at which constructive interference of two radio waves occurs is <em>47.3 °</em>.