Answer:
the number of cars washed per person is not the same for each number of workers, so the relationship is not proportionalStep-by-step explanation:
Step-by-step explanation:
Given that the graph shows the normal distribution of the length of similar components produced by a company with a mean of 5 centimeters and a standard deviation of 0.02 centimeters.
A component is chosen at random, the probability that the length of this component is between 4.98 centimeters and 5.02
=P(|z|<1) (since 1 std dev on either side of the mean)
=2(0.3418)
=0.6826
=68.26%
The probability that the length of this component is between 5.02 centimeters and 5.04 centimeters is
=P(1<z<2) (since between 1 and 2 std dev from the mean)
=0.475-0.3418
=0.3332
=33.32%
Answer:
WHERE IS THE TABLES HM???
Answer:
There is no picture or graph to go with the question so I am afraid I will not be able to give you a specific answer.
To find out if a point (x, y) is on the graph of a line, we plug in the values into that equation and see if we get a true statement, such as 10 = 10. If we get something different, like 6 = 4, we know that the point is not on the line because it does not satisfy the equation. Plug in (-301, 601) into the equation of the line to see whether that point lies on it or not.
Step-by-step explanation:
Suppose the equation of the straight line that passes through E and F is this:
y = 7x + 2
We are to figure out whether or not the point (1, 10) lies on that line. In order to do this we would plug in (1, 10) into the equation, with 1 being x and 10 being y.
10 = 7(1) + 2 = 7 + 2 = 9
10 = 9 is a false statement. Therefore, the point (1, 10) does NOT lie on the line y = 7x + 2.
If you were to provide an image or graph that shows the equation of line AB then perhaps I would be able to answer your question with a specific answer.
1. Alternate exterior angles
So, C
2.
180 = 76 + 2x
104 = 2x
52 = x
So, B
4.
4a. No
4b. Yes
4c. No
4d. Yes
5.
180 = 35 + 35 + 2x
180 = 70 + 2x
110 = 2x
55 = x
So, C.
7.
12/8 = 30/y
Cross multiply
12y = 240
y = 20
So, C
8. Alternate interior angles
So, A
9.
A C and D