Answer:
<em>a. The cart's acceleration is 2 m/s^2</em>
<em>b. The cart will travel 100 m</em>
<em>c. The speed is 20 m/s</em>
Explanation:
a. The acceleration of the cart can be calculated using Newton's second law:
F = m.a
Solving for a:

The cart has a mass of m=15 Kg and is applied a net force of F=30 N, thus:


b.
Now we use kinematics to find the distance and speed:

The cart starts from rest (vo=0). The distance traveled in t=10 seconds is:


The cart will travel 100 m
c.
The final speed is calculated by:

The speed is 20 m/s
Answer:
ΔT / Δx = 771 K/m
ΔT = 771 x 0.0475 = 36.62 k
Explanation:
P = 31700 W, A = 0.819 m^2, Δx = 0.0475 m, K = 50.2 W /m k
Use the formula of conduction of heat
H / t = K A x ΔT / Δx
So, ΔT / Δx = P / K A
ΔT / Δx = 31700 / (50.2 x 0.819)
ΔT / Δx = 771 K/m
Now
ΔT = 771 x 0.0475 = 36.62 k
Could be c because it matches the question
I looked it up and it gave me educational exercise, but I don't know if it is right.
The correct answer is: Option (D) length, speed
Explanation:
According to Faraday's Law of Induction:
ξ = Blv
Where,
ξ = Emf Induced
B = Magnetic Induction
l = Length of the conductor
v = Speed of the conductor.
As you can see that ξ (Emf/voltage induction) is directly proportional to the length and the speed of the conductor. Therefore, the correct answer will be Option (D) Length, Speed