1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
3 years ago
6

A copper rod has a length of 1.3 m and a cross-sectional area of 3.6 10-4 m2. One end of the rod is in contact with boiling wate

r and the other with a mixture of ice and water. What is the mass of ice per second that melts? Assume that no heat is lost through the side surface of the rod.
Physics
1 answer:
sdas [7]3 years ago
7 0

To solve the problem it is necessary to apply the concepts related to heat flow,

The heat flux can be defined as

\frac{dQ}{dt} = H = \frac{kA\Delta T}{d}

Where,

k = Thermal conductivity

A = Area of cross-sectional area

d = Length of the rod

\Delta T= Temperature difference between the ends of the rod

k =388 W/m.\°C Thermal conductivity of copper rod

A = 3.6 *10^{-4} m Area of cross section of rod

\Delta T=100-0=100\°C Temperature difference  

d=1.3m length of rod

Replacing then,

H = \frac{kA\Delta T}{d}

H = \frac{(388)(3.6 *10^{-4})(100)}{1.3}

H=10.7446J

From the definition of heat flow we know that this is also equivalent

H = \dot{m}*L

Where,

\dot{m} = Mass per second

L = 334J/g Latent heat of fusion of ice

Re-arrange to find \dot{m},

H = \dot{m}*L

\dot{m}=\frac{L}{H}

\dot{m}=\frac{334}{10.7446}

\dot{m} = 31.08g/s

\dot{m}= 0.032g/s

Therefore the mass of ice per second that melts is 0.032g

You might be interested in
By what factor will the Electrostatic Force between two charged objects change when the amount of charge on both objects doubles
Mademuasel [1]

Answer:

F' = (4/9)F

Explanation:

The electrostatic force between two charged objects is given by Coulomb's Law:

F = kq₁q₂/r²   -------------------- equation (1)

where,

F = Electrostatic Force

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of second charge

r = distance between charges

Now, when the charges and distance altered as follows:

q₁' = 2q₁

q₂' = 2q₂

r' = 3r

Then,

F' = kq₁'q₂'/r'²

F' = k(2q₁)(2q₂)/(3r)²

F' = (4/9)kq₁q₂/r²

using equation (1):

<u>F' = (4/9)F</u>

7 0
3 years ago
A car is going 8 meters per second on an access road into a highway
TiliK225 [7]

Answer:

20.96 m/s^2 (or 21)

Explanation:

Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.

At first, we know a car is going 8 m/s, that is its initial velocity.

Then, we know the acceleration, which is 1.8 m/s/s

We also know the time, 7.2 second.

Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.

(final velocity - initial velocity) = time * acceleration

final velocity = time*acceleration + initial velocity

After plugging the found values in, we get 20.96 m/s/s, or 21 m/s

3 0
3 years ago
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
3 years ago
Read 2 more answers
When a court has "___ ___" they can hear a case once a lower court has ruled on it.
notka56 [123]
Your answer is going to be Appellate jurisdiction.
3 0
3 years ago
What do the three variables (f,m, a) in the equation mean?
Anna [14]

Answer:

f=force m=mass and a=acceleration

7 0
3 years ago
Other questions:
  • Newton’s first law of motion applies to what?
    8·1 answer
  • What is the kinetic energy of an object that has a mass of 50.0kg and a velocity of 18 m/s?
    6·1 answer
  • The position of a particle is given by the function x=(5t3−8t2+12)m, where t is in s. at what time does the particle reach its m
    12·2 answers
  • Most of the energy we use today comes from renewable sources/<br> a. True<br> b. False
    9·2 answers
  • Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi
    11·2 answers
  • A vertical wall (8.7 m x 3.2 m) in a house faces due east. A uniform electric field has a magnitude of 210 N/C. This field is pa
    9·1 answer
  • Please help will mark brainliest!
    15·2 answers
  • Which activities demonstrate reaction time the most?
    14·1 answer
  • .・✫・゜・。.
    8·2 answers
  • A 200-turn solenoid having a length of 25 cm and a diameter of 10 cm carries a current of 0.29 A. Calculate the magnitude of the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!