<span>3.9 L I believe
I hope this helps!</span>
Explanation:
This question is not feasible. There is no way to calculate the energy needed because the question is missing the final temperature
The formula for solving the inertia (I) is I=mr² where "m" represents the mass of an object and "r" represents the perpendicular distance to the rotation axis.
item 1= 100 kg rock
Item 2= 5kg book
item 3= 60kg person
item 4=2000kg car.
The answer is the last item which is a 2000kg car.
Answer:
After 1 half-life (500 years), 500 g of the parent isotope will remain. After 2 half-lives (1000 years), 250 g of the parent isotope will remain. After 3 half-lives (1500 years), 125 g of the parent isotope will remain. After 4 half-lives (2000 years), 62.5 g of the parent isotope will remain.
Explanation:
Answer:
61.85 ohm
Explanation:
L = 12 m H = 12 x 10^-3 H, C = 15 x 10^-6 F, Vrms = 110 V, R = 45 ohm
Let ω0 be the resonant frequency.


ω0 = 2357 rad/s
ω = 2 x 2357 = 4714 rad/s
XL = ω L = 4714 x 12 x 10^-3 = 56.57 ohm
Xc = 1 / ω C = 1 / (4714 x 15 x 10^-6) = 14.14 ohm
Impedance, Z = 
Z = \sqrt{45^{2}+\left ( 56.57-14.14 )^{2}} = 61.85 ohm
Thus, the impedance at double the resonant frequency is 61.85 ohm.