The Potential energy stored in the system is 1 J
<u>Explanation:</u>
Given-
Mass, m = 4 kg
Spring constant, k = 800 N/m
Distance, x = 5cm = 0.05m
Potential energy, U = ?
We know,
Change in potential energy is equal to the work done.
So,

By plugging in the values we get,

Therefore, Potential energy stored in the system is 1 J
Answer:
The difference between ice and steam in Celsius (Centigrade) is 100 deg.
So the difference between and 4 cm and 24 cm of the thread corresponds to 100 deg C.
So 8 cm is 4 cm greater than the ice point
4 cm / 20 cm = 1/5 since the steam point and the ice point are 20 cm apart
Then 1/5 * 100 deg C = 20 deg C the requested temperature
The speed of light generally would be 300000km/s but since the train is moving in the same direction as the light it would apparently appear to be 100000km/s
This because your face has more sensitive tissue than anywhere else in your body
Hope this helps
<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>