Gravitational potential energy can be calculated using the formula <span>PE = m × g × h, where g is the gravitational acceleration and is constant hence the energy is dependent directly to mass and the height of the object. Hence more PE is registered when the object is heavier and/or at greater initial height. </span>
Answer:
The coefficient of friction and acceleration are 0.37 and 2.2 m/s²
Explanation:
Suppose we find the coefficient of friction and the acceleration of the 100 kg block during the time that the 60 kg block remains in contact.
Given that,
Mass of block = 60 kg
Acceleration = 2.0 m/s²
Mass = 100 kg
Horizontal force = 340 N
Let the frictional force be f.
We need to calculate the frictional force
Using balance equation

Put the value into the formula



We need to calculate the coefficient of friction
Using formula of friction force




We need to calculate the acceleration of the 100 kg block
Using formula of newton's law




Hence, The coefficient of friction and acceleration are 0.37 and 2.2 m/s²
Basketball is played with two<span> teams, with </span>4 players<span> from each team on the court at one time. The maximum number of players on the bench differs by league. In international play, a maximum of </span>7 players<span> are allowed on the bench, resulting in a roster of </span>12 players<span>.
I hope this helps!
</span>
Answer:
1st statement is true
Explanation:
Here statement 1 is correct
Let think about it, if you push down the bar then you are lifting your weight off the pedals.
Obviously, this question does not take into account of racing bikes with straps on pedals, where you would push on one side and pull on the other to match your legs are doing, with straps your other leg can pull pedals upward.