Correct answer: B
Cooling curve is the plot of temperature versus time as the sample is allowed to cool. In a cooling curve, we start at a temperature greater than the boiling point. At this temperature, the sample is in gaseous state. At the boiling point, there is no change in temperature as the gaseous and liquid states are in equilibrium. As the temperature reduces further, the liquid starts to condense and at the melting point of the sample the liquid undergoes phase transition to solid state. At the melting temperature, a second plateau is observed as the temperature remains unchanged. At temperatures below the melting point, the sample exists as a solid.
So from the curve, the second plateau is observed at around -111
. This point represents the phase transition from liquid to solid state.
Answer : Option A) the arrangement of bonded atoms.
Explanation : A structural formula of certain molecule depicts the way the atoms are arranged in that particular molecule in any polyatomic species. It helps in deciding the chemical properties of that polyatomic molecule.
The heat (Q) required to raise the temp of a substance is:<span>Q=m∗Cp∗ΔT</span><span> where m is the mass of the object (25.0g in this case), Cp is the specific heat capacity of the substance (for water Cp = 1.00cal/gC, or 4.18J/gC,
and Dt is the change in temp.
You'll have to solve this twice, once with the Cp in calories, and once with the Cp in joules.
</span><span>1380.72 Joules</span>
8/5lit.. of 12M NaOH
2/5lit.. of 2M NaOH
<u>Given:</u>
Calculated density values-
Aluminum = 2.7 g/cm3
Copper = 9.0 g/cm3
Iron = 7.9 g/cm3
Titanium = 4.8 g/cm3
Unknown sample mass = 9.5 g
Sample volume = 2.1 cm3
<u>To determine:</u>
The identity of the unknown sample
<u>Explanation:</u>
'Density' is a physical parameter which can be used to identify the nature of the unknown substance.
Density = Mass/Volume
For the unknown sample
Density = 9.5 g/2.1 cm3 = 4.52 g/cm3
This matches closely with the calculated density of titanium
Ans: The unknown substance is made of titanium