Answer:
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Explanation:
Step 1: Data given
Initial temperature = 10.0 °C
Final temperature = 25.0 °C
Energy required = 30000 J
Mass of the object = 40.0 grams
Step 2: Calculate the specific heat capacity of the object
Q = m* c * ΔT
⇒With Q = the heat required = 30000 J
⇒with m = the mass of the object = 40.0 grams
⇒with c = the specific heat capacity of the object = TO BE DETERMINED
⇒with ΔT = The change in temperature = T2 - T2 = 25.0 °C - 10.0°C = 15.0 °C
30000 J = 40.0 g * c * 15.0 °C
c = 30000 J / (40.0 g * 15.0 °C)
c = 50 J/g°C
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Answer:
the experimental group would be the teachers who recieved the candy
control group would be the teachers who dont get any candy
<em>Explanation:</em>
experimental group is the group that receives the test variable being tested in this case the variable being the candy
and the control group is the group who doesn't receive the variable
purpose of having a control is to rule out other factors which may influence the results of an experiment.
Answer: Conduction is the process by which heat energy is transmitted through collisions between neighboring atoms or molecules. ... The fire's heat causes molecules in the pan to vibrate faster, making it hotter. These vibrating molecules collide with their neighboring molecules, making them also vibrate faster.
HOPE THIS HELPS