An an increase in
temperature lead to more effective collisions between reactant particles and an
increase in the rate of a chemical reaction because the number of
molecules with sufficient energy to react increases. The answer is number 3.
Reactants Hydrogen: 5
Products Hydrogen: 5
Reactants Carbon: 3
Products Carbon: 3
Reactants Oxygen: 4
Products Oxygen: 5
Answer:
t = 7.58 * 10¹⁹ seconds
Explanation:
First order rate constant is given as,
k = (2.303
/t) log [A₀]
/[Aₙ]
where [A₀] is the initial concentraion of the reactant; [Aₙ] is the concentration of the reactant at time, <em>t</em>
[A₀] = 615 calories;
[Aₙ] = 615 - 480 = 135 calories
k = 2.00 * 10⁻²⁰ sec⁻¹
substituting the values in the equation of the rate constant;
2.00 * 10⁻²⁰ sec⁻¹ = (2.303/t) log (615/135)
(2.00 * 10⁻²⁰ sec⁻¹) / log (615/135) = (2.303/t)
t = 2.303 / 3.037 * 10⁻²⁰
t = 7.58 * 10¹⁹ seconds
A calorimeter contains reactants and a substance to absorb the heat absorbed. The initial temperature (before the reaction) of the heat absorbent is measured and then the final temperature (after the reaction) is also measured. The absorbent's specific heat capacity and mass are also known. Given all of this data, the equation:
Q = mcΔT
To find the heat released.