Answer:
Explanation:
5p - 14 = 8p + 4
5p = 8p + 18 <-- Moving constants to one side; add the same number of +14 to both sides.
-3p = 18. <-- The same thing with the variable itself.
p = -6 <-- Divide both sides by negative 3.
Answer:
send the wagon down a higher hill
Answer:
Explanation:
A
Those devices the hold up while the pitcher is pitching measures speed. It has nothing to do with weather and temperature.
Answer:
L = 1.11 x
m, is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.
Explanation:
Solution:
Data Given:
Heat Energy = 52000 J
Dielectric Constant of the plastic Bag = 3.7 = K
Thickness = 2.6 x
m =d
V = 610 volts
A = width x Length
width = 20 cm = 20 x
m
Length = ?
So,
we know that,
U = 1/2 C Δ
U = 52000 J
C = ?
V = 610 volts'
So,
U = 1/2 C Δ
52000 J = (0.5) x (C) x (
)
C = 0.28 F
And we also know that,
C = 
E = 8.85 x 
K = 3.7
A = 0.20 x L
d = 2.6 x
m
Plugging in the values into the formula, we get:
0.28 = 
Solving for L, we get:
L = 1.11 x
m,
is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.
Answer:
1.06 secs
Explanation:
Initial speed of sled, u = 8.4 m/s
Final speed of sled, v = 5.8 m/s
Coefficient of kinetic friction, μ = 0.25
Using the impulse momentum theory, we know that the impulse applied to the sled is equal to change in momentum of the sled:
FΔt = mv - mu
where m = mass of the object
Δt = time interval
F = force applied
The force applied on the sled is the frictional force, which is given as:
F = -μmg
where g = acceleration due to gravity
Therefore:
-μmgΔt = mv - mu
-μmgΔt = m(v - u)
-μgΔt = v - u
Making Δt subject of formula:
Δt = (v - u) / -μg
Δt = (5.8 - 8.4) / (-0.25 * 9.8)
Δt = -2.6/ -2.45
Δt = 1.06 secs
It took the sled 1.06 secs to travel from A to B.