Answer:
163.8 ft
Explanation:
In triangle ABD
= 155 ft


Using Pythagorean theorem in triangle ADC

= distance between the anchor points
distance between the anchor points is given as

Answer:
Explanation:
After the collision velocity of the particle is (4î - 3ĵ)m/s . ... A particle of mass 1 kg moving with a velocity of (4i^−3j^)m/s collides with a fixed surface. ... Perfectly inelastic. D ... The common velocity of the blocks after collision is: ... A ball falls from a height of 5 m and strikes the roof of a lift. ... Stay upto date with our Newsletter! i know this is not right but just here for points see ya loser
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).
M1 v1 = (m1 + m2)v2.
All of the exponents should be lowered to the bottom right of the letters.
You can only determine the speed since the only info we know is how much you ran in how long of a time.