The bicyclist accelerates with magnitude <em>a</em> such that
25.0 m = 1/2 <em>a</em> (4.90 s)²
Solve for <em>a</em> :
<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²
Then her final speed is <em>v</em> such that
<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)
Solve for <em>v</em> :
<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s
Convert to mph. If you know that 1 m ≈ 3.28 ft, then
(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h
Answer:
6J
Explanation:
Given parameters:
Mass of fish = 1kg
Velocity = 12m/s
Unknown:
Change in kinetic energy = ?
Solution:
Kinetic energy is the energy due to the motion of a body. It is mathematically given as:
K.E =
m v²
Now, insert the parameters and solve;
K.E =
x 1 x 12 = 6J
The change in kinetic energy is 6J
I believe it would be an unbalanced force. Because the forces are unbalanced, one side is stronger and, therefore, the object will move.
Answer:
R = 0.21 Ω
Explanation:
the formula:
R = r x l/A
R = (44 x 10-⁸ Ωm) x 1.5 / (π x (1 x 10-³ m)²)
R = 6.6 x 10-⁷ / 3.14 x 10-⁶
R = 0.21 Ω