<em>Your answer is:</em>
<em>c) </em><u><em>20°</em></u>
<em />
<em>∝ </em><em>Sidhdi</em>
Answer:

Explanation:
The rotational kinetic energy when the cylinder is with the rope is:

where we used the fact that both rope and cylinder hast the same w. This E_k must conserve, that is, E_k must equal E_k when the rope leaves the cylinder. Hence, the final w is given by:
(1)
For Ic and Ir we can assume that the rope is a ring of the same radius of the cylinder. Then, we have:

Finally, by replacing in (1):

hope this helps!!
Answer:
option (c)
Explanation:
90% of the body is submerged in water.
Now it is immersed in an unknown liquid whose density is less than the density of water.
Buoyant force acting on the body depends on the volume immersed, density of liquid and gravity.
As the density of liquid is less than the density of water, so the buoyant force acting on the body by the unknown liquid is less than water. So it is submerged less than 90% in this liquid.
Can you input a picture??
Answer:
Force, F = 77 N
Explanation:
A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.
We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :
F = m × a
Where
m = mass = 55 kg
a = acceleration = 1.4 m/s²

F = 77 N
So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.