Answer: 49.5 m
Explanation:
The speed of sound
is given by a relation between the distance
and the time
:
(1)
Where:
is the speed of sound in air (taking into account this value may vary according to the medium the sound wave travels)
since we are told th hunter was initially 412.5 meters from the cliff and then moves a distance
towards the cliff
Since the time given as data (2.2 s) is the time it takes to the sound wave to travel from the hunter's gun and then go back to the position where the hunter is after being reflected by the cliff
Having this information clarified, let's isolate
and then find
:
(2)
(3)
Finding
:
This is the distance at which the hunter is from the cliff.
Answer:
body position 4 is (-1,133, -1.83)
Explanation:
The concept of center of gravity is of great importance since in this all external forces are considered applied, it is defined by
x_cm = 1 /M ∑
m_{i}
y_cm = 1 /M ∑ y_{i} mi
Where M is the total mass of the body, mi is the mass of each element
give us the mass and position of this masses
body 1
m1 = 2.00 ka
x1 = 0 me
y1 = 0 me
body 2
m2 = 2.20 kg
x2 = 0m
y2 = 5 m
body 3
m3 = 3.4 kg
x3 = 2.00 m
y3 = 0
body 4
m4 = 6 kg
x4=?
y4=?
mass center position
x_cm = 0
y_cm = 0
let's apply to the equations of the initial part
X axis
M = 2.00 + 2.20 + 3.40
M = 7.6 kg
0 = 1 / 7.6 (2 0 + 2.2 0 + 3.4 2 + 6 x4)
x4 = -6.8 / 6
x4 = -1,133 m
Axis y
0 = 1 / 7.6 (2 0 + 2.20 5 +3.4 0 + 6 y4)
y4 = -11/6
y4 = -1.83 m
body position 4 is (-1,133, -1.83)
Answer:
(a) 
(b) 
(c)
(d)
Solution:
As per the question:
Refractive index of medium 1, 
Angle of refraction for medium 1, 
Angle of refraction for medium 2, 
Now,
(a) The expression for the refractive index of medium 2 is given by using Snell's law:

where
= Refractive Index of medium 2
Now,

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:


(c) To calculate the velocity of light in medium 1:
We know that:
Thus for medium 1
(d) To calculate the velocity of light in medium 2:
For medium 2:
The weightiness of the added
water displaced is equivalent to the joined weight of the two extra people who come
to be into the boat:
<span>m water g = 2 x 690 N</span>
<span> =
1,380 N</span>
<span>
</span>
The mass of the water displace
is then
<span>m water g = 1,380 N</span>
<span> = 1,380 N / 9.8 m/s^2</span>
<span> = 141 kg</span>
<span>
</span>
Compute the calculation for
density for the volume of water displace and practice this outcome for the mass
of the water displace to get the answer:
<span>p water = mass of water / volume of water</span>
<span>
</span>
<span>volume of water = mass of water / p water</span>
<span> = 141 kg / 1000 kg /m^3 eliminate
kilogram</span>
<span> = 0.14 m^3 the additional volume
of water that is displaced</span>