Answer:
1.2 m/s
0.31 m
0.15 m
Explanation:
Time period is

Frequency is

Velocity is given by

The waves are traveling at 1.2 m/s
Amplitude is given by

Amplitude is 0.31 m
If d = 0.3 m

The amplitude would be 0.15 m. The speed would remain the same.
Answer:
option C
Explanation:
given,
diameter of circular room = 8 m
rotational velocity of the rider = 45 rev/min
= 
=4.712 rad/s
here in this case normal force is equal to centripetal force
N = m r ω²
N = m x 4 x 4.712²
N = 88.83m
frictional force = μ N
= 88.83m x μ
now, for the body to not to slide
gravity force is equal to frictional force
m g = 88.83 m x μ
g = 88.83 x μ
9.8 = 88.83 x μ
μ = 0.11
hence, the correct answer is option C
Answer:
Statement 2 is wrong
Explanation:
To check the statements in this exercise, let's describe the main properties of electromagnetic waves. Let's describe the characteristics
* they are transverse waves
* formed by the oscillations of the electric and magnetic fields
* the speed of the wave is the speed of light
with these concepts let's review the final statements
1) True. Formed by the oscillation of the two fields
2) False. They are transverse waves
3) True. Can travel by vacuum as they are supported by oscillations of the electric and magnetic fields
4) True. They all have the same speed of light
Statement 2 is wrong
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:


W = m.g = weight
g = Gme/Re**2 where G= universal gravitational constant , Re= radius of the earth
me= mass of the earth
therefore it weighs 16 times less